首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为揭示自耦补偿与谐波屏蔽(新型)换流变压器电磁暂态瞬变过程,模拟直流输电系统中新型换流变压器网侧与阀侧端口电压、电流的输入、输出特性以及交直流之间的相互 作用,利用仿真软件Matlab分别建立了用于6脉动与12脉动直流输电系统的新型换流变压器仿真模型,并将其应用到直流输电系统动态仿真中。仿真结果表明:新型换流变压器取代传统换流变压器在一定程度上优化了直流输电系统的结构,通过对变压器第三绕组的零阻抗设计及绕组抽头处滤波器参数的合理配置,既能降低换流变压器网侧谐波含量、有效减少谐波与无功对换流变压器的损耗,又改善了换流变压器阀侧的线电压与相电流,有利于换流器可靠换相与正常运行。  相似文献   

2.
传统的高压直流输电系统一般在换流站交流网侧布置滤波兼无功补偿的装置,谐波与无功功率通过换流变压器回馈网侧时不仅会对变压器,同时也会对发电机产生不良影响。为此,以新型直流输电系统为平台,将传统的滤波和无功补偿装置移至阀侧第三绕组侧,利用变压器耦合绕组的谐波安匝平衡,使谐波电流与网侧隔离开来,并通过动态模拟实验,分析未接入滤波器和接入滤波器时,新型直流输电系统下谐波所引起的发电机的损耗和效率。结果表明,新型直流输电系统在改善发电机输出端电压和电流正弦波形的质量,提高发电机的额定出力方面具有独特的优越性。  相似文献   

3.
杨志栋  倪晴  罗隆福 《湖南电力》2021,41(2):32-35,40
针对基于电网换相换流器的高压直流输电(LCC-HVDC)系统中存在的换流变压器噪声大、逆变侧换相失败等问题,提出了采用LCL型换流器的高压直流输电系统。在PSCAD中建立荆门-上海±500 kV直流输电的LCC-HVDC和LCL-HVDC系统的仿真模型,在该模型中测量了换流变压器阀侧绕组的谐波电流,研究了换流变压器的负载损耗。通过研究发现相较于LCC-HVDC系统,LCL-HVDC系统中的换流变压器的负载损耗降低了约38.1%。  相似文献   

4.
新型换流变压器的谐波电流分析与计算   总被引:1,自引:1,他引:1  
介绍了一种新型换流变压器,利用新型换流变压器绕组接线的特点,提出了一种全新的滤波和无功补偿方案。简要分析了新型换流变压器谐波屏蔽原理。针对高压直流输电系统中谐波分布的特点,对基于新型换流变压器的直流输电系统中绕组及滤波支路谐波电流进行了详细的分析计算,通过对比仿真结果,表明了谐波电流理论分析计算的正确性,为新型换流变压器绕组线规的选择及滤波器参数设计提供了科学数据。  相似文献   

5.
换流变压器在实际运行中承受交直流复合电压,其绕组内部含有较高的谐波分量.谐波电流会影响换流变压器内部磁场从而产生谐波损耗.对此,本文搭建了400 kV换流变压器三维电磁瞬态仿真模型,对换流变压器谐波对于损耗的影响进行了研究,并通过对比试验数据验证模型的可靠性.以含谐波分量的电流作为激励,本文分别将各次谐波叠加在基波电流上进行了损耗计算.通过对比各次谐波电流叠加基波电流作为激励时换流变压器铁心、绕组以及结构件的损耗分布,总结了谐波对于换流变压器内部损耗的影响机理.  相似文献   

6.
新型交直流输电系统谐波抑制的机理   总被引:1,自引:1,他引:1  
为降低换流器产生的谐波对交流系统的影响,提出了一种可有效抑制谐波于阀侧且可降低滤波器设计难度的新型换流变压器和新的谐波抑制方案。介绍了新型换流变压器的绕组接线方式、电压偏移角的计算、绕组匝数比的确定后分析了谐波抑制的机理和有效谐波抑制对绕组谐波阻抗的要求。为验证该谐波抑制方案的可行性和正确性,建立了基于新型换流变压器和传统换流变压器的交直流输电系统的仿真模型,两个模型的阀侧和网侧电流的对比分析证明,新型换流变压器的交直流输电系统谐波抑制效果良好。  相似文献   

7.
《电网技术》2021,45(8):3155-3163
换流变压器是特高压直流输电系统换流站的重要组成部分,是承担交直流转换的核心设备之一。考虑到换流变易受由阀侧导通引起的谐波电流和无功缺额的影响而产生绕组故障和铁心震动等问题,提出一种新的适用于特高压直流输电系统的空间棱柱结构三柱四绕组式换流变压器模型。基于统一磁等值电路理论,给出了该模型的电磁耦合电路,通过附加绕组等值负磁通来实现谐波滤除功能。利用电磁耦合电路等效电路,依据附加绕组对谐波的分流作用,削弱阀侧谐波电流向网侧传递的影响。在PSCAD/EMTDC中搭建特高压直流输电系统与三柱四绕组式换流变模型,通过仿真计算,验证了所提出换流变电磁耦合模型的正确性。仿真结果表明,依据该电磁耦合模型设计的等效电路能在不影响原有系统正常换流的前提下有效提升换流变网侧电压电流波形质量。  相似文献   

8.
针对传统直流输电系统中谐波不稳定现象,研究了一种新型换流变压器及其滤波系统。其阀侧绕组采用延边三角形接线,为3倍数次谐波电流提供通路;通过匝比配合,实现12脉波换流;延边绕组与公共绕组构成自耦变压器接线,在公共绕组上连接滤波支路,并调至谐振点,配之以变压器零阻抗设计,在阀侧实现谐波抑制兼无功补偿功能。对拟建立的直流输电开发研究平台在设计参数的基础上,进行了计算机仿真研究,仿真结果表明:新型换流变压器及其滤波系统可大幅降低交流网侧中2、3次非特征谐波与11、13次特征谐波电流含量,很好地抑制直流输电系统的谐波不稳定,同时新系统中的滤波器阻抗在基频下呈容性,其对换流器可进行无功功率补偿,改善了系统的动态稳定性。  相似文献   

9.
感应滤波技术通过实现阀侧两个绕组间的谐波磁势平衡将负载特征谐波抑制于换流变压器的阀侧,换流变压器的绕组结构及滤波器的接入点与传统方案存在差异,因此感应滤波器的接入必须会给直流输电系统产生一定的影响。以CIGRE直流输电标准测试系统仿真模型为参考,在PSCAD/EMTDC电磁暂态仿真程序中,建立了基于感应滤波技术的新型直流输电测试系统仿真模型,并对两种测试系统的稳态和典型故障运行特性进行了对比研究,重点分析了感应滤波对新型直流输电系统运行特性的影响;仿真结果表明感应滤波可明显减少交、直流侧电流的谐波含量,且具有较好的故障恢复能力。  相似文献   

10.
由于高压直流输电系统特有的优点,使高压直流输电系统得到越来越广泛的应用。但高压直流输电系统具有其本身的特点,使得换流变压器与普通电力变压器在构造上有一些不同,高压直流输电系统中换流器是非线性元件,产生大量谐波,谐波对换流变压器保护动作有影响,再加上直流控制系统对故障的控制和调节作用,导致换流变压器和传统电力变压器保护存在差异。基于PSCAD/EMTDC仿真程序研究了CIGRE直流输电标准测试系统在正常运行,换流变压器内部故障和整流侧换流阀短路典型故障情况下的特点。并用Matlab分析了各种情况下的数据,并  相似文献   

11.
高压直流输电中谐波对换流变压器差动保护的影响   总被引:3,自引:0,他引:3  
由于高压直流输电系统特有的优点,使高压直流输电系统得到越来越广泛的应用.但高压直流输电系统具有其本身的特点,使得换流变压器与普通电力变压器在构造上有一些不同,高压直流输电系统中换流器是非线性元件,产生大量谐波,谐波对换流变压器保护动作有影响,再加上直流控制系统对故障的控制和调节作用,导致换流变压器和传统电力变压器保护存在差异.基于PSCAD/EMTDC仿真程序研究了CIGRE直流输电标准测试系统在正常运行,换流变压器内部故障和整流侧换流阀短路典型故障情况下的特点.并用Matlab分析了各种情况下的数据,并得出换流变压器差流中谐波的特点及对换流变压器差动保护的影响.  相似文献   

12.
陈慧  刘宁 《电工技术》2023,(3):115-118
大容量变压器充电过程中产生的励磁涌流是交流系统常见的二次谐波来源之一,因高压直流输电工程固有运行特性,整流侧交流系统100 Hz谐波分量经直流换流阀转变后在直流侧呈现为50 Hz谐波分量,在直流线路谐波放大作用下,极易引发逆变站50 Hz谐波保护误动,甚至导致高压直流输电工程多回、多极闭锁,故在工程规划设计阶段需全面充分评估整流侧交流系统大容量变压器、换流变压器充电对直流工程运行的影响,同步策划解决方案。以某直流工程整流站换流变压器充电及整流侧交流系统电厂主变充电期间逆变站两起50 Hz保护动作为例,详细分析了保护动作原因,明确了整流侧大容量变压器、换流变压器充电对该直流输电工程安全运行的影响,并提出了后续运维建议及彻底整治措施研究的技术路线。  相似文献   

13.
换流变压器是直流输电系统中必不可少的重要设备,其参数选择的合适与否关系整个直流输电系统的运行性能和技术经济指标.根据换流阀的浪涌电流水平,结合交流侧最大三相短路容量和直流系统的额定直流电压、电流计算最小的换流变压器短路阻抗,在数学上推导了短路阻抗的计算公式,避免了工程上反复迭代的过程.实际工程采用的短路阻抗值在此基础上考虑一定的裕度,然后基于该值再计算阀侧额定电压、额定容量等参数.以整流侧定电流逆变侧定电压控制方式为例,考虑系统参数及相关的测量误差,详细论述了换流变压器最小最大档位的计算过程.最后通过一个工程实例验证了该计算方法的合理性.  相似文献   

14.
换流变压器是直流输电系统中必不可少的重要设备, 其参数选择的合适与否关系整个直流输电系统的运行性能和技术经济指标。根据换流阀的浪涌电流水平,结合交流侧最大三相短路容量和直流系统的额定直流电压、电流计算最小的换流变压器短路阻抗,在数学上推导了短路阻抗的计算公式,避免了工程上反复迭代的过程。实际工程采用的短路阻抗值在此基础上考虑一定的裕度,然后基于该值再计算阀侧额定电压、额定容量等参数。以整流侧定电流逆变侧定电压控制方式为例,考虑系统参数及相关的测量误差,详细论述了换流变压器最小最大档位的计算过程。最后通过一个工程实例验证了该计算方法的合理性。  相似文献   

15.
提出了一种具有特殊接线方案的改进型感应滤波高压直流输电系统,其2个换流变压器的公共绕组并联后接1套全调谐感应滤波器组,且滤波器组中不含有5、7次滤波器,仅为11、13次双调谐滤波器,大幅减少了滤波器和开关等设备的投入。分析了改进型感应滤波高压直流输电系统的谐波传递特性,分析结果表明此系统同样能够有效地将谐波电流屏蔽于换流变压器的阀侧绕组,减小网侧绕组的谐波电流。最后对一背靠背的12脉波改进型感应滤波直流输电系统试验平台进行试验测试,测试结果验证了理论分析的正确性,说明了改进型感应滤波直流输电系统的可行性。  相似文献   

16.
本文提出了一种自耦补偿与谐波屏蔽的新型换流变压器,阐述了新型换流变压器的接线方案和谐波抑制机理;建立了新型换流变压器谐波模型,分析了绕组的谐波电流,推导出使新型换流变压器网侧绕组谐波电流为零的条件。最后针对具体的新型高压直流输电平台模型给出了滤波装置设计实例,分析仿真计算结果表明,本文提出的新型换流变压器原理正确,参数选择合理,滤波效果好,总谐波含量小,在谐波治理方面实现了新突破,具有良好的应用前景。  相似文献   

17.
换流变压器是高压直流输电系统的核心设备,其损耗将会对直流输电系统的稳定性产生影响,因而备受关注。因此,首先探究了换流变压器空负载损耗的影响因素,并利用Matlab软件的Simulink平台进行了仿真分析。仿真结果表明:对于换流变压器的空载损耗,谐波次数和谐波电压畸变率的增加使得空载损耗下降,但下降幅度较小,其中5、7次谐波对空载损耗的影响最大;对于换流变压器的负载损耗,谐波次数和谐波电流畸变率的增加使得负载损耗增加,幅度较大,且谐波次数和畸变率对负载损耗的影响远大于空载损耗。然后,提出了适用于换流变压器现场测量的含附加电阻的换流变压器谐波等值电路,利用谐波损耗新模型与常规谐波等效电路对换流变压器谐波损耗进行计算,并将计算结果与IEC方法的计算结果进行对比,对比结果验证了新模型的合理性。根据本文提出的方法,可以对换流变压器损耗现场测试结果进行校正,因此对换流变压器的现场试验具有重要的工程意义。  相似文献   

18.
换流变压器是高压直流输电系统的重要设备,准确计算换流变压器的谐波损耗,具有十分重要的意义。笔者在分析换流变压器结构与性能特点的基础上,利用Magnet建立时谐场简化计算模型,通过有限元方法对换流变压器绕组和金属结构件中产生的谐波损耗进行了仿真计算,得到了在高次谐波电流下谐波损耗的数值并与测量结果和IEC 61378-2—2001法所计算的结果进行了比较。结果表明:仿真的结果与IEC61378-2—2001法所计算的结果相比更接近实测值,能够满足工程设计要求。在此基础上,对加铜屏结构下的谐波损耗值与未加铜屏时的结果进行了对比和讨论。  相似文献   

19.
地磁感应电流(GIC)通过中性点侵入换流变压器时,会使处于额定工作状态的变压器铁心偏磁饱和,使得变压器励磁电流畸变,从而产生大量谐波及较大的无功损耗,导致变压器损坏或降低使用寿命,严重时甚至引起系统电压降低、系统继电保护误动作。文章基于UMEC磁路模型建立了用于GIC问题分析的换流变压器模型;并利用该模型在PSCAD/EMTDC中进行仿真计算,详细地分析了在GIC作用下换流变压器励磁电流的谐波特性、换流变压器网侧和阀侧谐波特性及无功损耗特性;最后提出了GIC影响下换流变压器抑制直流偏磁的方法并进行了分析比较。  相似文献   

20.
柔性直流输电系统的谐振问题及主动抑制方法   总被引:1,自引:0,他引:1  
电网不对称故障会产生电压负序和零序分量,并激发换流变压器注入更大的低次谐波,增大功率器件承受的电气应力,且基于电压源换流器高压直流输电(voltage source converter based high voltage direct current,VSC-HVDC)系统的交流阻抗在变压器特征谐波频段大部分呈容性,使系统在该频段易发生谐振,导致换流站热过载和波形质量问题凸显。因此,讨论换流站交、直流侧谐波相互作用的机理,建立从交流侧看入换流站的正负序交流低频阻抗模型,提出等效增大换流站输出阻抗支路谐波电阻的方法,全面扼制换流站输出阻抗支路谐波电流,且不影响系统基波电阻。利用电力系统仿真软件EMTDC建立了VSC-HVDC模型,对柔性直流输电系统中的谐振问题以及主动抑制方法进行仿真研究。仿真结果表明,所提出控制策略能有效抑制谐振过电压,因此,提高了柔性直流输电系统不对称故障下运行的安全性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号