首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
永磁直驱风电机组低电压穿越时的有功和无功协调控制   总被引:5,自引:0,他引:5  
为提高基于全功率变流器并网的永磁直驱风电机组低电压穿越能力,在深入研究该风电机组运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种采用机侧变流器控制直流电压稳定,网侧变流器实现最大功率跟踪和有功无功协调的新型控制策略。在低电压穿越过程中,该控制策略根据变流器直流侧电压的变化,通过机侧变流器调节风力发电机的电磁功率,使电网故障期间风电机组的功率波动由发电机转子承担,消除全功率变流器两端的功率不平衡,稳定直流侧电压。并根据电网电压幅值,通过网侧变流器实现对风电机组输出有功和无功的协调控制,抑制电网电压扰动。仿真结果表明本文所提控制策略在电网电压扰动时能有效抑制直流侧电压波动,使永磁直驱风电机组的低电压穿越能力得到显著提高,并能有效实现对电网电压的支持。  相似文献   

2.
为避免电网电压跌落导致海上风电机组脱网运行,分析了直驱永磁同步海上风电系统的双PWM全功率变流器控制策略,提出了一种基于超级电容器蓄能的海上风电机组并网运行低电压穿越方案。在双向变流器的直流侧并联超级电容蓄能系统,利用超级电容来维持电网故障时的功率平衡,稳定直流侧母线电压。利用网侧变流器静止无功补偿运行模式控制无功电流输出,向电网提供无功功率支持。仿真结果表明了该方案在电网故障时,能有效抑制直流侧过电压,向电网提供无功功率,有利于电网故障恢复,提高了直驱永磁海上风电系统的低电压穿越能力。  相似文献   

3.
通过全功率PWM变流器并网的笼型异步风力发电机组(the Full Rated Converter Induction Generator,FRC - IG),以其低成本、高可靠性和易维护的特点引起了人们的关注.在分析笼型异步风电机组数学模型的基础上,对全功率PWM变流器的控制策略进行了研究,给出了基于转矩给定的最大功率跟踪控制策略,通过对电磁转矩的调节间接控制发电机转速来跟随最大功率曲线.网侧变流器采用并网电压控制策略,根据并网电压的幅值来调节无功功率抑制电网电压的波动,在保证风电机组安全运行的同时降低了机组并网对电网的影响.仿真结果表明所采用的控制策略能很好地实现风电机组的最大风能跟踪,降低并网点电压波动.在电网电压故障期间,并网电压控制策略还可以有效地提高机组的低电压穿越能力,保障风电机组稳定运行.  相似文献   

4.
针对永磁直驱风力发电机组的低电压穿越运行问题,对传统的控制策略进行改进,机侧增加功率前馈控制,根据机侧与网侧的功率差快速调节机侧有功电流的给定值从而控制发电机的转矩,实现对发电机输出有功功率的控制。网侧变流器对电网电压进行跟踪,根据跌落程度向电网输出一定的无功能量来支持电网电压的恢复。经仿真表明,所改进的控制策略能够快速稳定直流母线电压,实现风电机组低电压穿越运行。  相似文献   

5.
直驱风机低电压穿越控制技术研究及实测验证   总被引:2,自引:0,他引:2  
随着风电大规模接入电网,新的并网规范要求风力发电机组必须具有低电压穿越能力.针对直驱式风电机组,采用直流母线卸荷电阻限制电压跌落时变流器直流环节产生的过电压,并通过改进电流控制策略抑制变流器过电流,从而实现永磁同步发电机风电机组的低电压穿越运行.在网侧变流器数学模型的基础上进行了卸荷电阻的优化设计,提出了电网电压跌落故障时网侧变流器的改进电流控制策略,最后在1.5 MW级永磁同步发电机风电机组上进行现场低电压穿越能力测试,实测验证了所提出方法的正确性.  相似文献   

6.
基于双馈感应发电机(DFIG)风力发电系统模型,通过分析电网电压跌落情况下的各种运行状况,提出在电网严重故障期间,采用Active Crowbar电路和直流侧卸荷电路保护变流器和避免直流侧电压过压。在电网故障恢复期间,Crowbar电路的再次投入使得系统无功需求增大。并在网侧变流器的功率容量范围内,提出一种网侧变流器无功功率的控制策略来实现对电网无功支持,以助于电网故障恢复以及加快机端电压恢复。基于PSCAD/EMTDC平台建立了仿真系统模型并验证了该控制策略的有效性。该控制策略满足了风电机组并网的低电压穿越,有效提高了DFIG风电机组运行的可靠性。  相似文献   

7.
针对电网电压不对称跌落故障,提出一种用于双馈风机的变流器控制策略,以满足低电压穿越标准的要求。策略使用转子侧变流器控制转子正序电流以保证风机的有功和无功输出,网侧变流器保持额定电流输出能量,同时使用斩波器稳定直流母线电压。针对1.5MW双馈风电机组进行了仿真模型和实际测试验证,结果表明该策略有效保证了双馈风机系统低电压穿越的实现。  相似文献   

8.
提出了一种基于变流器的失速型风电机组低电压穿越改造方案。该方案采用全功率背靠背变流器,机侧变流器稳定定子电压,网侧变流器稳定直流母线电压并发出无功电流,实现了机组在电压跌落期间的有功平衡和无功补偿。结合失速型风电机组的特点,提出了一种以稳定定子电压为控制目标的机侧控制策略,并设计了电压电流双闭环控制来抑制机侧滤波电路带来的振荡。在MATLAB/Simulink中建立了780kW失速型风电机组仿真模型,并在110kW电机平台上进行了实验,验证了方案的可行性。  相似文献   

9.
全功率变流器永磁直驱风电系统低电压穿越特性研究   总被引:28,自引:4,他引:24  
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的运行变得尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行。针对使用背靠背全功率变流器的永磁直驱风电系统,提出一种在电网电压瞬间跌落情况下不脱网运行的方法。电网发生电压瞬间跌落时,网侧变流器运行在静止无功补偿(STATCOM)模式,依据电网电压跌落的深度决定发出无功电流的大小,通过快速提供无功电流来稳定电网电压,实现直驱型风电系统的低电压穿越功能。仿真和实验结果表明电网电压故障时使直驱风电系统运行在STATCOM模式可以有效提高低电压穿越能力。  相似文献   

10.
全功率变速水力发电机组是水力发电机组变速运行主要方式之一,能更快速度响应电网功率变化需求,对间歇性与随机性强的新能源消纳具有重要意义,其机组的低电压穿越能力是保障机组稳定并网运行的关键。提出了一种基于机组转子储能的低电压穿越控制策略,充分利用水力发电机组转子储能能力强和机组输入功率可以调节的特点,采用转子储能和调速器调节吸收控制电网电压跌落期间的机组不平衡能量,并根据电网电压跌落幅值通过网侧变流器向电网提供无功电流支撑。建立了系统各部件的数学模型,通过仿真比对了提出的控制策略与传统的策略,仿真结果表明提出的控制策略能有效抑制直流母线过电压,并向电网提供无功电流支撑,提高了全功率变速水力发电机组的低电压穿越能力。  相似文献   

11.
研究高速永磁同步风电机组的控制策略,提高其低电压穿越能力。在Matlab/Simulink环境下构建了背靠背双PWM变流器并网的高速永磁同步风电机组仿真模型。模拟了发电机和变流器在电网电压跌落30%(0.6s),60%(2s)时的运行情况。仿真结果表明,高速永磁同步发电机机组功率跟踪良好,在电网电压跌落时对电网提供无功支持,具有较强的低电压穿越能力。  相似文献   

12.
电网电压对称跌落时,通过对机侧变流器和网侧变流器的控制,使得风电机组不仅能够不脱网运行还能对电网提供无功,帮助电网电压恢复,实现双馈风力发电系统的低电压穿越。其中,机侧变流器的控制目标是实现最大风能跟踪以及控制无功功率,网侧变流器的控制目标是保证直流母线电压的稳定以及对输入电流无功分量进行控制。采用撬棒保护电路使流过转子侧的电流和直流母线电压在安全的范围之内。本文在原有的双馈风力发电机功率给定方法的基础上,增加了转速闭环,提升了转速与功率实时匹配的动态性能,增强了系统抗冲击能力,提高了系统稳定性。实验结果表明,提出的改进变换器控制策略和硬件保护相结合的低电压穿越控制方法动态响应快、方法行之有效。  相似文献   

13.
张友鹏  郭瑾  高锋阳  董唯光 《电源技术》2012,36(12):1883-1886
针对电网电压对称跌落时永磁直驱风电系统低电压穿越能力的问题,在网侧控制中提出使用电机侧与电网侧的功率差信号来稳定直流侧电压,并且根据电压跌落深度控制无功和有功功率的输出大小,构成功率外环与电流内环双环控制系统。仿真结果表明,在电网电压跌落20%以内且持续时间不大于0.2 s时,该控制策略保证了直流侧电压稳定,有助于提高无功功率注入电网及恢复电网电压。  相似文献   

14.
电网不对称故障发生后,采用已有的平衡控制策略,在维持并网有功稳定输出的同时无法消除直流侧电压的两倍工频谐波,且难以保证并网电流处于安全范围内。为此提出一种适用于永磁直驱风机的改进低电压穿越协调控制策略。该策略在低压暂态期间利用机侧变流器追踪并网输出有功,确保直流侧两端功率基本平衡;通过在直流侧增加电压前馈控制环节,抑制了直流侧电压波动;利用电压跌落因子修正网侧变流器电流参考指令,防止并网电流越限。仿真结果表明,该策略在维持并网有功稳定输出下,较好地抑制了直流侧电压波动,同时降低了并网电流幅值,提高了机组的低电压穿越能力。  相似文献   

15.
提出一种"直流卸荷电路+定子动态变阻值撬棒保护(stator dynamic series resistor crowbar,SDSRC)+静止无功补偿器+网侧无功控制"的综合控制策略,并从电压跌落程度、功率损耗角度出发,考虑SDSRC适用范围,将控制策略分为两种模式,其中SDSRC取值为动态变阻值,以能更好地适应电压跌落水平的变化,起到提升机组低电压穿越能力和稳定运行能力的作用。在PSCAD平台下构建基于综合控制策略的双馈风电机组模型,通过仿真验证了不同电压跌落下的双馈风电机组低电压穿越能力,以及两种模式的综合控制策略的可行性。研究结果表明,所提方法不仅能有效保护机组直流侧电容和转子变流器,增强机组低电压穿越能力,而且增强了故障穿越后机组和系统运行的稳定性,克服了传统crowbar技术的弊端。  相似文献   

16.
针对Boost升压型永磁直驱型风电系统,分析了其发电机侧和网侧变流器的控制策略.为增强其低电压穿越能力,提出了一种基于转子储能和网侧无功优先输出的控制策略.通过减小发电机的有功输出来降低直流侧过电压,通过控制网侧无功输出来提升电网电压.基于Matlab/Simulink 7.10搭建了仿真模型.仿真结果证明了该控制策略的有效性.  相似文献   

17.
钟诚  魏来  严干贵 《电力建设》2016,(12):68-73
随着风电机组安装容量的不断上升,风电系统在电网故障情况下的稳定运行尤为重要,电网导则要求风电机组在电网电压瞬间跌落一定范围内不脱网运行,具备低电压穿越能力(low-voltage ride-through,LVRT)。对于永磁同步风力发电机(permanent magnet synchronous generator,PMSG)机组,快速控制直流电容电压是实现低电压穿越的关键。文章采用一种基于模式切换的PMSG机组低电压穿越控制策略,该策略在电网电压正常和故障时进行控制模式切换,选择网侧变流器或机侧变流器来控制直流电容电压。另外,为加快直流母线控制速度,提出了一种改进前馈方法,加快了控制速度,降低了直流母线电压的峰值。仿真结果验证了所提控制策略的有效性。  相似文献   

18.
电网电压跌落时双馈风电系统无功支持策略   总被引:2,自引:0,他引:2  
电网要求风电场/风电机组具有低电压穿越能力,其中包括风电场在电网故障期间应该提供无功支持,但是双馈风机转子侧变流器(RSC)为了实现自我保护会触发Crowbar而被旁路,失去对风机的功率控制。针对这个问题,建立了风机网侧变流器(GSC)的数学模型,分析了STATCOM的基本原理;提出一种无功支持策略,即电网电压跌落期间STATCOM与风机网侧变流器共同向电网提供无功功率,支持电网电压恢复。基于Matlab/Simulink平台进行仿真验证,结果表明,该无功支持策略能有效支持电网电压恢复,提高双馈风电系统的低电压穿越能力。  相似文献   

19.
针对转子Crowbar电路的双馈风力发电机组低电压穿越需要闭锁变流器控制脉冲、直流母线电压波动无法较好地抑制,提出了一种定子Crowbar电路模式切换的双馈风电机组低电压穿越控制方案。电网发生故障时,定子Crowbar电路接入系统,双馈风电机组切换至感应发电机组模式下,转子侧变流器采用转子功率外环控制,网侧变流器采用功率协调控制方案,将机侧功率当作前馈量引入到网侧变流器控制策略中并向电网注入无功功率。仿真分析表明,所提控制方案在确保实现双馈风电机组低电压穿越的同时,能够有效地降低转子暂态电流、稳定直流母线电压,并向电网提供无功功率。  相似文献   

20.
随着风电穿透功率的增大,在电网电压跌落时切除风电机组的传统控制策略已经不能满足电网安全稳定的要求,因此新的电网规则要求风力发电机组必须具有低电压穿越能力。文中介绍了几种直驱型风电系统常用的直流侧crowbar电路,通过比较,选择直流侧使用卸荷电阻的crowbar电路,并与网侧逆变器配合,实现直驱型风电系统的低电压穿越。仿真结果表明,采用卸荷电阻并配合网侧逆变器控制,可以有效提高直驱型风电系统的低电压穿越能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号