首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
用固相法合成了LiFePO4/C、LiFe0.95Mg0.05PO4/C和LiFe0.9Mg0.1PO4/C.Mg2+的掺杂可提高放电比容量和循环性能,LiFe0.95Mg0.05PO4/C的0.2 C首次放电比容量为155 mAh/g;LiFe0.9Mg0.1PO4/C以10.0 C循环20次,放电容量几乎无衰减.  相似文献   

2.
LiFePO4掺镍的改性研究   总被引:11,自引:4,他引:7  
采用固相反应法制备了锂离子电池正极材料LiFe1-xNixPO4(x=0、0.05、0.10、0.20、0.30、0.40和0.50).Ni替代部分Fe,改变了LiFePO4的晶胞参数,获得了完全连续固溶的LiFe1-xNixPO4,掺杂后,样品的粒径变小.在低放电倍率(0.1 C)时,LiFeo.90Ni0.10PO4的首次放电容量最大,为140 mAh/g,较LiFePO4增加了12%;放电倍率为0.5 C时,其容量为114 mAh/g,较LiFePO4增加了32%.少量Ni掺杂可提高LiFePO4的放电容量,改善高倍率充放电性能.  相似文献   

3.
LiFePO4掺镍的改性研究   总被引:1,自引:0,他引:1  
采用固相反应法制备了锂离子电池正极材料LiFe1-xNixPO4(x=0、0.05、0.10、0.20、0.30、0.40和0.50).Ni替代部分Fe,改变了LiFePO4的晶胞参数,获得了完全连续固溶的LiFe1-xNixPO4,掺杂后,样品的粒径变小.在低放电倍率(0.1 C)时,LiFeo.90Ni0.10PO4的首次放电容量最大,为140 mAh/g,较LiFePO4增加了12%;放电倍率为0.5 C时,其容量为114 mAh/g,较LiFePO4增加了32%.少量Ni掺杂可提高LiFePO4的放电容量,改善高倍率充放电性能.  相似文献   

4.
舒叶  刘锐  张胤  马晓华 《电池》2011,41(6):301-303
用两步法制备掺杂Ni的磷酸铁锂(LiFePO4)/石墨烯复合材料。XRD、SEM和TEM等方法对产物的分析表明:橄榄石型LiFe0.95Ni0.05PO4颗粒的粒径为200~800 nm。循环伏安和恒流充放电测试结果表明:以0.1C和5.0C的电流在2.5~4.2 V充电,制备的LiFe0.95Ni0.05PO4/石墨烯复合材料的首次放电比容量分别为147.2 mAh/g和89.5 mAh/g,循环20次,放电容量均无明显的衰减。  相似文献   

5.
陈猛  张维维 《电池工业》2008,13(5):295-298
采用液相碳热还原法合成了Co改性的锂离子电池正极材料LiFe1-xCoxPO4(X=0,0.02,0.05,0.08),采用XRD、SEM、循环充放电、电化学阻抗和循环伏安方法研究了材料的结构和电化学性能,结果表明:掺杂适量的Co^3^+可以减小晶胞体积,提高LiFePO4的循环性能和比容量。其中LiFe0.95Co0.05PO4在0.2C下的首次放电比容量可达到128.84mAh/g,40次循环充放电容量仍保持在93.3%以上。循环伏安和电化学阻抗测试表明材料具有良好的充放电可逆性和较小的阻抗。  相似文献   

6.
LiFe1-x MnxPO4正极材料的合成及结构与性能   总被引:1,自引:0,他引:1  
杨平  戴曦  唐红辉  张传福 《电源技术》2005,29(11):755-757
采用高温固相法、优化操作后合成出LiFe1!xMnxPO4复合正极材料,利用X射线衍射(XRD)分析其结构,扫描电镜(SEM)观察其形貌,恒电流法测定其电化学性能。研究结果表明:合成所得LiFe1!xMnxPO4材料为单一橄榄石型晶体结构,晶型完整、杂相少;对比室温下不同倍率充放电结果发现,LiFe0.8Mn0.2PO4具有较好的电化学性能,在0.5C倍率下首次放电比容量达到134.7mAh/g,循环30次后比容量为127.3mAh/g,循环可逆性能良好。  相似文献   

7.
以Li Ni0.5Co0.2Mn0.3O2和Li Mn0.7Fe0.3PO4混合材料为正极活性物质、人造石墨为负极活性物质,制备锂离子电池。两种正极材料均为球形,粒径分布相近,D50分别为7.93μm和7.21μm。差示扫描量热测试结果表明:混合正极的热分解温度较高(263℃)且放热量小。分别以Li Ni0.5Co0.2Mn0.3O2、Li Mn0.7Fe0.3PO4和两者质量比为78∶22的混合材料制备电池,以1 C在3.0~4.2 V充放电,循环300次的容量保持率分别为92.8%、97.0%和97.6%。混合正极电池2 C倍率放电容量保持率为94.0%,在针刺和过充等测试过程中不起火、不爆炸。  相似文献   

8.
通过使用碳纳米管(CNTs)构建三维空间导电网络,改善LiFe PO4颗粒之间的电子传导能力,研究其对LiFe PO4正极材料电化学性能的影响,并与不含CNTs的LiFe PO4正极材料进行了对比。研究结果表明,含有CNTs导电网络的电池极化程度和界面阻抗明显小于不含CNTs的电池。在0.1 C充放电倍率下,前后者首次放电比容量分别为165.6和164.4 m Ah/g,低倍率容量几乎相差不大;而在10 C充放电条件下,前者首次放电比容量达到121.9 m Ah/g,明显高于后者的109.8 m Ah/g;以1 C充电10 C放电循环1 000次,前者容量几乎无衰减,后者衰减27.8%。  相似文献   

9.
通过碳热还原,合成了不同钒掺杂量(x)的球形碳包覆磷酸铁锂(LiFePO4/C)材料LiFe1-xVxPO4/C。循环伏安和恒流充放电测试表明,适当的钒掺杂能改善材料的电化学性能。x=0.05的材料,电化学性能较好,以0.1 C在2.5~4.2 V充放电,首次放电比容量为151.1 mAh/g,10.0 C倍率时,放电比容量仍能维持在104.4 mAh/g左右。  相似文献   

10.
正极材料LiFe0.5-xMn0.5NixPO4/C的制备与性能   总被引:1,自引:1,他引:0  
通过机械活化、高温固相反应,合成了正极材料LiFe0.5-xMn0.5NixPO4/C(x=0、0.1)。XRD、SEM分析表明:材料均为纯相的橄榄石型,镍的掺杂使晶胞参数有所减小,并使二次颗粒更小、更均匀。循环伏安测试结果表明:镍的掺杂减轻了材料的电化学反应极化。以0.1C、0.2C、0.5C、1.0C在2.5~4.2 V充放电,LiFe0.4Mn0.5Ni0.1PO4/C的首次可逆放电比容量分别为149.0 mAh/g、145.8 mAh/g、133.1 mAh/g和124.6 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号