首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
双馈型风力发电系统低电压穿越策略仿真   总被引:12,自引:6,他引:6  
针对双馈风力发电机组的低电压穿越能力的问题,介绍了风力发电在电网电压跌落时的并网要求,分析了目前已有的各种应对策略,提出了一套应对电网电压跌落时的控制策略。对于电网严重短暂跌落,通过对转子电流和直流侧电压滞环比较来控制Active Crowbar和直流侧卸荷电路,以卸荷多余能量并保护变流器,并保持风电机组的并网。对于电网的长时间跌落,还进行电网电压闭环发送无功,以支持电网进行恢复。通过仿真模型验证了所提出的控制策略能很好地抑制转子侧电流和直流侧电压的上升,并对电网提供无功支持。  相似文献   

2.
随着风电装机容量不断扩大对风电场的低电压穿越能力提出了更为严格的要求,而传统的笼型异步发电机组本身并不具备低电压穿越能力。本文针对全功率变流器的笼型异步风电机组,在深入研究该机组的运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种基于功率跟踪优化和网侧无功优先输出的控制策略。在电网电压跌落时,该控制策略根据网侧变流器的功率变化切换功率跟踪曲线以减少发电机的有功输出,抑制直流侧过电压。同时,根据国网公司并网技术规范要求,电网无功电流以及电网电压的跌落深度时迅速向电网提供无功,提升电网电压。仿真结果表明该控制策略可以有效抑制直流侧电压的波动,提高了笼型异步风电机组的低电压穿越能力。  相似文献   

3.
永磁直驱风电机组低电压穿越时的有功和无功协调控制   总被引:5,自引:0,他引:5  
为提高基于全功率变流器并网的永磁直驱风电机组低电压穿越能力,在深入研究该风电机组运行特性和控制策略的基础上,分析了电网电压跌落过程中引起全功率变流器直流侧电压波动的原因,提出了一种采用机侧变流器控制直流电压稳定,网侧变流器实现最大功率跟踪和有功无功协调的新型控制策略。在低电压穿越过程中,该控制策略根据变流器直流侧电压的变化,通过机侧变流器调节风力发电机的电磁功率,使电网故障期间风电机组的功率波动由发电机转子承担,消除全功率变流器两端的功率不平衡,稳定直流侧电压。并根据电网电压幅值,通过网侧变流器实现对风电机组输出有功和无功的协调控制,抑制电网电压扰动。仿真结果表明本文所提控制策略在电网电压扰动时能有效抑制直流侧电压波动,使永磁直驱风电机组的低电压穿越能力得到显著提高,并能有效实现对电网电压的支持。  相似文献   

4.
传统的光伏并网逆变器高电压穿越控制策略以削减有功功率为代价提高无功输出,难以平衡网侧电流和直流母线电压、抑制故障切除后电流和电压突变带来的暂态冲击。在分析高电压暂态功率特性的基础上,提出一种维持有功功率输出不变、调整无功电流参考值的高电压穿越控制策略。首先,以小信号模型分析高电压暂态功率特性,得出高电压期间有功功率不变、网侧无功冗余是抑制电压恢复的关键;然后,依据电网电压骤升幅度给出一种估算无功电流参考值的方法;在此基础上,结合有功电流控制,讨论3种不同电网电压骤升幅度下并网逆变器的控制能力,分别给出相应的高电压控制策略;最后,仿真和实验验证了所提控制策略的有效性。  相似文献   

5.
基于双馈感应发电机(DFIG)风力发电系统模型,通过分析电网电压跌落情况下的各种运行状况,提出在电网严重故障期间,采用Active Crowbar电路和直流侧卸荷电路保护变流器和避免直流侧电压过压。在电网故障恢复期间,Crowbar电路的再次投入使得系统无功需求增大。并在网侧变流器的功率容量范围内,提出一种网侧变流器无功功率的控制策略来实现对电网无功支持,以助于电网故障恢复以及加快机端电压恢复。基于PSCAD/EMTDC平台建立了仿真系统模型并验证了该控制策略的有效性。该控制策略满足了风电机组并网的低电压穿越,有效提高了DFIG风电机组运行的可靠性。  相似文献   

6.
新能源并网运行时可能因为电网电压跌落造成并网电流过流,甚至反复并、离网,进而引发电流传感器故障,并网逆变系统非正常运行。为使并网系统在电网电压跌落和电流传感器故障后不脱网运行,提出一种考虑低电压穿越的电流重构模型预测控制策略。在电网电压跌落和电流传感器故障后,分析并网系统电压矢量和电流对应关系,利用直流母线电流和预测电流重构故障相电流。建立低电压穿越控制模型,根据其无功电流补偿指令动态改变逆变器参考电流信号,优选满足代价函数最小的开关状态作为最优电压矢量进行无功补偿。仿真与实验表明在电网电压跌落和电流传感器故障后所提控制策略仍能连续运行,补偿无功电流,为电网提供无功支撑。  相似文献   

7.
建立了电网电压不平衡环境下永磁直驱风力发电机电网侧变流器的数学模型,分析了直流侧电压2倍频分量产生机理,讨论了并网电抗器上的功率波动对网侧变流器双电流控制策略的影响。为抑制不平衡电网电压下直流侧电压2倍频分量,在计及并网电抗器上功率波动的基础上,提出了一种基于正负序电压分别定向的双电流控制策略,并引入了并网电抗器上功率波动修正量对控制算法中的参考电流进行修正。仿真结果表明所提控制策略不仅能有效地控制正负序电流、抑制直流侧电压的2倍频分量,还能减少并网电流的谐波含量。  相似文献   

8.
为提高直流微电网低电压穿越能力和稳定性,提出正负序分离的直流微电网低电压穿越控制策略。通过变换器整体数学模型,将电网电压和并网电流进行正负序分离,依据电压跌落程度设置有功和无功电流设置。建立基于PSIM仿真模型针对该低电压穿越控制策略进行仿真分析,实验结果表明,当网侧发生单相和两相不对称电压跌落时,采用该策略系统可继续保持在并网运行状态,系统有功输出减少到1.8kW,无功功率的输出增加到0.8kVar附近,有利于电网电压的恢复,实现低电压穿越。  相似文献   

9.
由于负载的不对称、输电线路的老化、电网电压的不对称故障等原因,并网变流器的接入端常出现电网电压不对称的现象。若电网电压不对称故障下不采取一定控制策略,并网变流器的直流侧端电压、交流侧电流和有功无功功率将出现二倍频振荡。这将严重影响到并网变流器的稳定运行。因此研究不对称电网电压下并网变流器的控制十分有必要。本文以并网变流器为研究对象,对其在不对称电网电压下的运行特性进行理论分析与仿真验证。首先建立了并网变流器在不对称电网电压下的数学模型,理论分析了电容电流谐振闭环对直流侧电压二倍频脉动抑制、无功功率谐振闭环对网侧无功功率二倍频脉动抑制的合理性,并通过仿真验证了本文所提出控制策略的有效性。通过对直流侧电压和网侧无功功率二倍频振荡的抑制,提高了并网变流器在不对称电网电压下安全稳定运行能力。  相似文献   

10.
为避免电网电压跌落导致海上风电机组脱网运行,分析了直驱永磁同步海上风电系统的双PWM全功率变流器控制策略,提出了一种基于超级电容器蓄能的海上风电机组并网运行低电压穿越方案。在双向变流器的直流侧并联超级电容蓄能系统,利用超级电容来维持电网故障时的功率平衡,稳定直流侧母线电压。利用网侧变流器静止无功补偿运行模式控制无功电流输出,向电网提供无功功率支持。仿真结果表明了该方案在电网故障时,能有效抑制直流侧过电压,向电网提供无功功率,有利于电网故障恢复,提高了直驱永磁海上风电系统的低电压穿越能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号