首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对永磁直线同步电机PMLSM 伺服系统中的诸多不确定性问题, 提出了采用神经网络来实现实时积分- 比例IP 位置控制器的在线设计。本文所提出的神经网络结构合理、简单,权值具有明确物理意义和可以在线快速调整的特点, 以便进行实时控制。用由递推最小二乘估计器RLS和负载扰动力观测器构成的估计器来估计动子质量、粘滞摩擦系数和负载扰动力。将观测的负载扰动力前馈, 进一步增强系统的鲁棒性。  相似文献   

2.
基于神经网络的永磁直线同步电机位置控制   总被引:1,自引:0,他引:1  
针对永磁直线同步电机(PMLSM)伺服系统中的诸多不确定性问题,提出了采用神经网络来实现实时积分-比例IP位置控制器的设计。本文所提出的神经网络结构合理、简单,权值具有明确物理意义和可以在线快速调整的特点,以便进行实时控制。用由模型参考自适应参数辨识器和负载扰动力观测器构成的估计器来估计动子质量和负载扰动力。将观测的负载扰动力前馈,进一步增强系统的鲁棒性。仿真结果表明,系统具有很强的鲁棒性,同时提高了稳态精度。  相似文献   

3.
交流永磁直线同步电机伺服系统的预见前馈补偿   总被引:7,自引:0,他引:7  
介绍了高精度、微进给永磁直线交流同步电机(PMLSM)伺服系统的IP位置控制后,提出了对该系统的最优预见前馈补偿,以提高系统的跟踪性能。为了补偿负载扰动,进一步增强系统的鲁棒性,设计了负载扰动力观测器来进行前馈。仿真实验结果证明了所提出方案的有效性。  相似文献   

4.
基于非线性扰动观测器的永磁同步电机单环预测控制   总被引:1,自引:0,他引:1  
为改进永磁同步电机控制系统的动态性和鲁棒性,降低控制器参数调整难度,提出了一种基于广义预测控制和非线性扰动观测器的转速–电流单环控制方法。首先,根据永磁同步电机的连续时间模型,通过非线性广义预测控制理论,设计了显式单环预测控制器。然后,针对系统中的电磁和机械参数变化、负载扰动等非匹配扰动,设计了非线性扰动观测器估计系统所有扰动,用于前馈补偿控制,并证明了系统的稳定性。另外,基于无差拍原理设计了电流限幅控制环节,以保证单环控制下电机工作于电流约束内。最后,仿真和试验结果表明,提出的方法动态性能好、超调小,对负载和参数变化抗扰性强,而且控制器只需简单调节预测时域和观测器增益,为工程实现提供了有效途径。  相似文献   

5.
永磁同步电机伺服控制系统的非线性和不确定性的特点,给高性能位置伺服控制的实现带来了困难。为了克服电机及负载在内的广义被控对象不确定性因素和非线性因素对系统性能造成的影响,本文采用自抗扰控制器设计了伺服控制系统的速度环和位置环。自抗扰控制将系统所有扰动量,包括负载扰动、控制跟踪误差、模型误差等等,作为系统的一个状态变量,利用扩张状态观测器对扰动进行在线估计,并根据估计结果对扰动进行前馈补偿控制,从而抑制扰动对整个伺服控制系统的影响。  相似文献   

6.
基于预测控制和模型参考自适应的PMSM电流控制   总被引:1,自引:0,他引:1  
主要研究永磁同步电机(PMSM)在扰动下的电流快速跟踪控制问题。首先,基于非线性广义模型预测控制原理,考虑电机实际运行中的模型和参数不确定性等扰动,设计PMSM电流控制器;然后,利用模型参考自适应方法设计了系统扰动观测器,并将估计的扰动量用于预测控制器的前馈补偿控制;最后,完成了仿真验证,结果表明,所提电流复合控制方法能实现电流的快速跟踪控制,而且在电机参数变化、负载扰动等状况下均具有较强的鲁棒性。  相似文献   

7.
针对潜器螺距调节式全方位推进器的工作环境和负载特性比较复杂的特点,为了提高全方位推进器主轴转速系统的动态性能和对参数扰动的鲁棒性,利用鲁棒控制理论,建立了永磁同步电机传动系统的反馈线性化模型,实现了主轴转速系统的鲁棒控制.该速度控制系统由负载转矩扰动估计器以及鲁棒控制器两部分构成.负载转矩扰动估计器主要用于负载扰动估计,以确保有效补偿负载扰动的影响.鲁棒控制器在电机参数发生变化和出现干扰的情况下,获得转速的跟踪性能.仿真结果表明,采用H∞鲁棒控制器的永磁同步电机主轴转速控制系统较传统的PID控制系统具有更好的跟踪性能、鲁棒稳定性和抗干扰性能.  相似文献   

8.
针对非线性的电液伺服系统,提出一种利用基于输入等价干扰的通用模型控制算法(ICMC)来设计控制器新策略.该控制器用估计得到的输入等价干扰及时进行自适应前馈补偿.控制器参数整定方便,物理意义明确.ICMC控制器能有效地跟踪液压伺服系统的时变参数和不可测扰动,通过仿真实验表明,该控制方法对非线性的液压弯辊力系统实现自适应控制是正确有效的.  相似文献   

9.
永磁同步电动机伺服系统自校正零相位误差跟踪控制   总被引:1,自引:0,他引:1  
针对基于零相位误差跟踪控制器(ZPETC)的永磁同步电动机伺服系统易受系统参数变化的影响,本文采用递推最小二乘法对永磁交流伺服系统的转动惯量和粘滞摩擦系数进行了在线估计,并利用根据辨识得到的转动惯量与粘滞摩擦系数对ZPETC进行在线调整,使系统在参数变化时仍然具有良好的跟踪性能.为了克服负载转矩突变对伺服系统的不良影响,还设计了一个参数可以根据辨识得到的转动惯量和粘滞摩擦系数自动更新的负载观测器,该观测器可以使系统在参数变化时仍然能够精确地观测系统的负载转矩,进行精确的前馈补偿,从而大大提高了伺服系统的抗干扰性能.仿真结果表明,此控制方案在保证伺服系统的快速精确跟踪性的同时,对系统参数变化和负载扰动具有很强的鲁棒性.  相似文献   

10.
基于自适应神经网络的PMLSM速度控制研究   总被引:1,自引:1,他引:0  
吴雪芬 《电气传动》2008,38(6):37-39
针对永磁直线同步电机(PMLSM)直接驱动系统的非线性与电机参数时变、易受扰动的特性,提出一种基于BP神经网络的自适应神经网络速度控制器.该控制器由一个传统的PID位置控制器、神经网络控制器(NNC)和神经网络辨识器(NNM)组成.仿真结果表明,当突加负载扰动或参数突变时,系统具有较好的动态性能和较强的鲁棒性,能够满足工业场合高精度、微进给的需求.  相似文献   

11.
A method for estimating the sway angle using an observer has already been proposed. The state observer estimates the sway angle accurately and must use the detected sway angle value. However, the estimated sway angle has an error owing to rope length error, friction force, and wind. Moreover, the container mass cannot be determined, and therefore the observer parameter is not suitable. We already proposed robust antisway control for overcoming rope length error without adding a new sensor. Further, we designed a friction disturbance observer to cancel out the influence of the friction force. In this paper, we first propose a container mass estimation method when a crane system performs rolling up control. The observer parameter can be selected using the estimated mass value. Second, in crane parallel shift control, we propose a robust antisway control even when there is a wind disturbance. We design a wind disturbance observer and propose a wind disturbance estimator to separate the friction observer output from the wind disturbance observer output. We confirm through experiments that the proposed method can reduce vibration.  相似文献   

12.
永磁直线同步电动机(PMLSM)伺服系统易受摩擦力和推力波动等外部扰动的影响,为保证系统按照期望轨迹运动,需要对这些扰动进行补偿,而且系统质量信息的准确性对扰动补偿能力有很大影响。针对这一问题,提出一种基于扩展卡尔曼滤波器(EKF)的变质量估计和扰动补偿方法。首先,建立与电机位置有关的扰动模型,作为扰动补偿器。然后,采用七阶EKF计算电机初始位置、估计质量的变化并反映到扰动补偿器中,同时通过自适应律整定扰动模型系数确保扰动模型与实际扰动保持同步,实现对系统的变质量估计和扰动补偿。实验结果证明了所提控制方案的有效性与可行性,明显提高了系统的位置跟踪性能和抗扰性能。  相似文献   

13.
吴旭  张倩  王群京  崔宁豪 《微电机》2021,(5):62-66+85
摩擦非线性扰动是影响伺服跟踪系统控制性能的主要因素之一。为提高转台伺服系统的跟踪性能,提出了一种基于Elastoplastic摩擦模型的改进自抗扰控制方法。首先,建立了转台伺服系统的状态空间模型;其次,采用Elastoplastic摩擦模型描述系统中的非线性摩擦扰动,并用遗传算法辨识了模型参数;最后,基于辨识获得的Elastoplastic摩擦模型,将位置误差和速度误差作为不同的参数分别应用到扩张状态观测器,设计了一种改进型自抗扰控制器。未引入摩擦补偿时的速度跟踪误差平均值约为0.0024 rad/s,而加入补偿后的速度跟踪误差平均值减少为0.00147 rad/s。仿真和实验结果表明,本文提出的控制方案能够提高转台伺服系统的跟踪性能,验证了所提出控制方法的有效性和鲁棒性。  相似文献   

14.
采用复合控制的直流力矩电机摩擦补偿   总被引:5,自引:0,他引:5  
针对陀螺漂移测试转台直流力矩电机系统中存在的非线性动态摩擦和负载扰动,为提高转台位置跟踪精确度,采用复合控制方法进行摩擦补偿研究.在转台直流电机系统中,电机模型采用简化的二阶线性直流电机模型,摩擦模型采用摩擦参数为非一致性变化的动态摩擦模型.补偿方法包含一个参数自适应律和CMAC神经网络,用于估计未知模型参数、辨识位置周期摩擦扰动并给与补偿.仿真结果表明,复合控制补偿方法保证了闭环系统全局稳定性和对期望位置信号的渐进跟踪,提高了转台位置跟踪精确度.  相似文献   

15.
针对永磁直线同步电机(PMLSM)伺服系统的位置跟踪精度易受摩擦力、负载扰动等不确定性因素影响的问题,采用基于摩擦和扰动补偿的非奇异快速终端滑模控制(NFTSMC)方法来设计位置控制器。首先,建立含有Stribeck摩擦模型的PMLSM动态模型,使用自然选择粒子群算法对摩擦模型进行离线参数辨识;其次采用NFTSMC方法来确保系统状态快速收敛,避免奇异问题,利用辨识的摩擦模型进行补偿;最后采用滑模观测器对总不确定因素进行观测和补偿,削弱了抖振现象。仿真验证了所采用的控制策略提高了位置跟踪精度,同时具有快速收敛性和较强的抗扰性。  相似文献   

16.
为克服转台低速运动时摩擦力测量不准确的缺点,设计了具加速度计的摩擦力测量系统以实现精确测量.利用加速度计测量的启动加速度,获得伺服转台的所需驱动力矩,利用霍尔传感器获得驱动电流,获得电机的总的驱动力矩,从而获得伺服转台的干扰力矩.测量中转矩纹波对摩擦力的测量影响巨大,其主要由机械及电气因素引起,具有周期性特征,设计了数字滤波器误差滤除,获得摩擦力矩的有效值,进而采用非线性最小二乘拟合出摩擦力矩的Stribeck参数,最后在光电设备转台中实验.结果表明,将测量得摩擦力矩加入原有伺服转台模型中,正弦引导时,可准确表现出转台位置秃顶及速度反向“0”速点不连续的现象,仿真与实验的速度误差有效值为0.044°/s,相关系数达0.990 9,位置误差有效值为0.026 5°,相关系数达0.995.该测量系统及方法可有效精确测量出伺服转台的Stribeck摩擦力矩,该测量方法亦可用于其他光电设备摩擦力矩测量.  相似文献   

17.
针对直线电机易受诸多不确定因素的影响,提出了采用递归模糊神经网络和扰动观测器的控制方案。系统采用IP位置控制器;扰动观测器将所观测的扰动力前馈,提高了系统的抗干扰能力。为改善系统受到突加减扰动时的伺服性能,引进了递归模糊神经网络补偿器,采用动态反馈学习算法,在线调整。仿真结果表明,该控制方案可以有效增强系统的鲁棒性。  相似文献   

18.
本文提出了一种基于非线性观测器的永磁同步电动机(PMSM)的转子位置估计方案。非线性观测器构造两个新的状态变量,利用这两个状态变量中所包含的位置信息,将电动机转子的位置估算出来。为验证此方案的稳定性和可行性,以TI公司的数字信号处理器TMS320F2812为核心搭建硬件平台,对整个控制系统进行了实验验证。实验结果表明,所采用的非线性观测器对转子位置的估算非常有效,同时整个控制系统在比较宽的调速范围内能稳定运行。  相似文献   

19.
针对圆筒形永磁直线同步电机,设计了一种位置控制系统。考虑到直线电机的推力脉动、摩擦力和系统模型的不确定性,采用干扰观测器(DOB)对其进行在线估算并进行补偿,经过补偿,系统模型近似等价其标称模型;基于标称模型设计速度前馈控制器,基于速度控制系统的模型设计位置前馈控制器,使得永磁直线同步电机控制系统的输出能够无误差地跟踪期望的速度和位置响应曲线;采用综合校正方法设计反馈控制器,保证系统的稳定性。最后给出了仿真结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号