首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objective

Arterial spin labelling (ASL) techniques benefit from the increased signal-to-noise ratio and the longer T 1 relaxation times available at ultra-high field. Previous pulsed ASL studies at 7 T concentrated on the superior regions of the brain because of the larger transmit radiofrequency inhomogeneity experienced at ultra-high field that hinders an adequate inversion of the blood bolus when labelling in the neck. Recently, researchers have proposed to overcome this problem with either the use of dielectric pads, through dedicated transmit labelling coils, or special adiabatic inversion pulses.

Materials and methods

We investigate the performance of an optimised time-resampled frequency-offset corrected inversion (TR-FOCI) pulse designed to cause inversion at much lower peak B 1 + . In combination with a PICORE labelling, the perfusion signal obtained with this pulse is compared against that obtained with a FOCI pulse, with and without dielectric pads.

Results

Mean grey matter perfusion with the TR-FOCI was 52.5 ± 10.3 mL/100 g/min, being significantly higher than the 34.6 ± 2.6 mL/100 g/min obtained with the FOCI pulse. No significant effect of the dielectric pads was observed.

Conclusion

The usage of the B 1 + -optimised TR-FOCI pulse results in a significantly higher perfusion signal. PICORE–ASL is feasible at ultra-high field with no changes to operating conditions.
  相似文献   

2.

Objectives

The aim of this study was to demonstrate the feasibility of in vivo three-dimensional (3D) relaxation time T 2 * mapping of a dicarboxy-PROXYL radical using continuous-wave electron paramagnetic resonance (CW-EPR) imaging.

Materials and methods

Isotopically substituted dicarboxy-PROXYL radicals, 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-(1-15N)-1-oxyl (2H,15N-DCP) and 3,4-dicarboxy-2,2,5,5-tetra(2H3)methylpyrrolidin-(3,4-2H2)-1-oxyl (2H-DCP), were used in the study. A clonogenic cell survival assay was performed with the 2H-DCP radical using squamous cell carcinoma (SCC VII) cells. The time course of EPR signal intensities of intravenously injected 2H,15N-DCP and 2H-DCP radicals were determined in tumor-bearing hind legs of mice (C3H/HeJ, male, n = 5). CW-EPR-based single-point imaging (SPI) was performed for 3D T 2 * mapping.

Results

2H-DCP radical did not exhibit cytotoxicity at concentrations below 10 mM. The in vivo half-life of 2H,15N-DCP in tumor tissues was 24.7 ± 2.9 min (mean ± standard deviation [SD], n = 5). The in vivo time course of the EPR signal intensity of the 2H,15N-DCP radical showed a plateau of 10.2 ± 1.2 min (mean ± SD) where the EPR signal intensity remained at more than 90% of the maximum intensity. During the plateau, in vivo 3D T 2 * maps with 2H,15N-DCP were obtained from tumor-bearing hind legs, with a total acquisition time of 7.5 min.

Conclusion

EPR signals of 2H,15N-DCP persisted long enough after bolus intravenous injection to conduct in vivo 3D T 2 * mapping with CW-EPR-based SPI.
  相似文献   

3.

Objective

To segment and classify the different attenuation regions from MRI at the pelvis level using the T 1 and T 2 relaxation times and anatomical knowledge as a first step towards the creation of PET/MR attenuation maps.

Materials and methods

Relaxation times were calculated by fitting the pixel-wise intensities of acquired T 1- and T 2-weighted images from eight men with inversion-recovery and multi-echo multi-slice spin-echo sequences. A decision binary tree based on relaxation times was implemented to segment and classify fat, muscle, prostate, and air (within the body). Connected component analysis and an anatomical knowledge-based procedure were implemented to localize the background and bone.

Results

Relaxation times at 3 T are reported for fat (T 1 = 385 ms, T 2 = 121 ms), muscle (T 1 = 1295 ms, T 2 = 40 ms), and prostate (T 1 = 1700 ms, T 2 = 80 ms). The relaxation times allowed the segmentation–classification of fat, prostate, muscle, and air, and combined with anatomical knowledge, they allowed classification of bone. The good segmentation–classification of prostate [mean Dice similarity score (mDSC) = 0.70] suggests a viable implementation in oncology and that of fat (mDSC = 0.99), muscle (mDSC = 0.99), and bone (mDSCs = 0.78) advocates for its implementation in PET/MR attenuation correction.

Conclusion

Our method allows the segmentation and classification of the attenuation-relevant structures required for the generation of the attenuation map of PET/MR systems in prostate imaging: air, background, bone, fat, muscle, and prostate.
  相似文献   

4.

Objective

To reduce acoustic noise levels in T 1-weighted and proton-density-weighted turbo spin-echo (TSE) sequences, which typically reach acoustic noise levels up to 100 dB(A) in clinical practice.

Materials and methods

Five acoustic noise reduction strategies were combined: (1) gradient ramps and shapes were changed from trapezoidal to triangular, (2) variable-encoding-time imaging was implemented to relax the phase-encoding gradient timing, (3) RF pulses were adapted to avoid the need for reversing the polarity of the slice-rewinding gradient, (4) readout bandwidth was increased to provide more time for gradient activity on other axes, (5) the number of slices per TR was reduced to limit the total gradient activity per unit time. We evaluated the influence of each measure on the acoustic noise level, and conducted in vivo measurements on a healthy volunteer. Sound recordings were taken for comparison.

Results

An overall acoustic noise reduction of up to 16.8 dB(A) was obtained by the proposed strategies (1–4) and the acquisition of half the number of slices per TR only. Image quality in terms of SNR and CNR was found to be preserved.

Conclusions

The proposed measures in this study allowed a threefold reduction in the acoustic perception of T 1-weighted and proton-density-weighted TSE sequences compared to a standard TSE-acquisition. This could be achieved without visible degradation of image quality, showing the potential to improve patient comfort and scan acceptability.
  相似文献   

5.

Objectives

The purpose of this study was to assess the reproducibility of substantia nigra pars compacta (SNpc) and locus coeruleus (LC) delineation and measurement with neuromelanin-sensitive MRI.

Materials and methods

Eleven subjects underwent two neuromelanin-sensitive MRI scans. SNpc and LC volumes were extracted for each scan. Reproducibility of volume and magnetization transfer contrast measurements in SNpc and LC was assessed using intraclass correlation coefficients (ICC) and dice similarity coefficients (DSC).

Results

SNpc and LC volume measurements showed excellent reproducibility (SNpc-ICC: 0.94, p < 0.001; LC-ICC: 0.96, p < 0.001). SNpc and LC were accurately delineated between scans (SNpc-DSC: 0.80 ± 0.03; LC-DSC: 0.63 ± 0.07).

Conclusion

Neuromelanin-sensitive MRI can consistently delineate SNpc and LC.
  相似文献   

6.

Objective

To accelerate a passive tracking sequence based on phase-only cross correlation (POCC) using simultaneous slice excitation.

Methods

For magnetic resonance (MR)-guided biopsy procedures, passive markers have been proposed that can be automatically localized online using a POCC-based tracking sequence. To accelerate the sequence, a phase-offset multiplanar (POMP) excitation technique was implemented to acquire tracking images. In a phantom experiment, the POMP–POCC sequence was tested and compared with the sequential non-accelerated version in terms of duration and accuracy. Further, technical feasibility of the POMP–POCC sequence was tested in a patient undergoing a prostate biopsy.

Results

The temporal resolution of the POMP–POCC tracking sequence is accelerated by 33% compared with the sequential approach. In phantom experiments, the POMP–POCC and sequential sequences yielded the same targeting accuracy of 1.6?±?0.7 mm. Technical proof of concept of the new sequence could be demonstrated in a successful in vivo prostate biopsy.

Conclusion

POMP–POCC tracking can substantially reduce the duration of localization of passive markers in MR-guided needle interventions without compromising targeting accuracy.
  相似文献   

7.

Objective

To demonstrate that high resolution 1H semi-LASER MRSI acquired at 7 T permits discrimination of metabolic patterns of different thalamic nuclei.

Materials and methods

Thirteen right-handed healthy volunteers were explored at 7 T using a high-resolution 2D-semi-LASER 1H-MRSI sequence to determine the relative levels of N-Acetyl Aspartate (NAA), choline (Cho) and creatine-phosphocreatine (Cr) in eight VOIs (volume <0.3 ml) centered on four different thalamic nuclei located on the Oxford thalamic connectivity atlas. Post-processing was done using the CSIAPO software. Chemical shift displacement of metabolites was evaluated on a phantom and correction factors were applied to in vivo data.

Results

The global assessment (ANOVA p < 0.05) of the neurochemical profiles (NAA, Cho and Cr levels) with thalamic nuclei and hemispheres as factors showed a significant global effect (F = 11.98, p < 0.0001), with significant effect of nucleus type (p < 0.0001) and hemisphere (p < 0.0001). Post hoc analyses showed differences in neurochemical profiles between the left and the right hemisphere (p < 0.05), and differences in neurochemical profiles between nuclei within each hemisphere (p < 0.05).

Conclusion

For the first time, using high resolution 2D-PRESS semi-LASER 1H-MRSI acquired at 7 T, we demonstrated that the neurochemical profiles were different between thalamic nuclei, and that these profiles were dependent on the brain hemisphere.
  相似文献   

8.

Purpose

To evaluate the function of an active implantable medical device (AIMD) during magnetic resonance imaging (MRI) scans. The induced voltages caused by the switching of magnetic field gradients and rectified radio frequency (RF) pulse were measured, along with the AIMD stimulations.

Materials and methods

An MRI-compatible voltage probe with a bandwidth of 0–40 kHz was designed. Measurements were carried out both on the bench with an overvoltage protection circuit commonly used for AIMD and with a pacemaker during MRI scans on a 1.5 T (64 MHz) MR scanner.

Results

The sensor exhibits a measurement range of?±?15 V with an amplitude resolution of 7 mV and a temporal resolution of 10 µs. Rectification was measured on the bench with the overvoltage protection circuit. Linear proportionality was confirmed between the induced voltage and the magnetic field gradient slew rate. The pacemaker pacing was recorded successfully during MRI scans.

Conclusion

The characteristics of this low-frequency voltage probe allow its use with extreme RF transmission power and magnetic field gradient positioning for MR safety test of AIMD during MRI scans.
  相似文献   

9.

Object

Recent advances have allowed oscillating gradient (OG) diffusion MRI to infer the sizes of micron-scale axon diameters. Here the effects on the precision of the inferred diameters are studied when reducing the number of images collected to reduce imaging time for clinical feasibility.

Materials and methods

Monte Carlo simulations of cosine OG sequences (50–1000 Hz) using a two-compartment model on a parallel cylinder (diameters 1–5 μm) geometry were conducted. Temporal diffusion spectroscopy was used to infer axon diameters. Three different gradient sets were simulated with different combinations of gradient strengths.

Results

Five frequencies were adequate for d = 3–5 μm with single-sized cylinders and for effective mean axon diameters greater than 2 μm for cylinders with a distributions of diameters. There was some improvement in precision for d = 1–2 μm with 10 frequencies. It is better to repeat measurements at higher gradient strengths than to use a range of gradient strengths. The improvement tended to be greatest when using fewer frequencies and was especially noticeable at very high gradient strengths.

Conclusion

Images can be collected with fewer gradient strengths and frequencies without sacrificing the precision of the measurements. This could be useful in reducing imaging time so that OG techniques can be used in clinical settings.
  相似文献   

10.

Objectives

Contrast agent (CA) relaxivities are generally not well established in vivo, and the relationship between frequency/phase shift and magnetic susceptibility might be a useful alternative for CA quantification.

Materials and methods

Twenty volunteers (25–84 years old) were investigated using test–retest pre-bolus dynamic susceptibility-contrast (DSC) magnetic resonance imaging (MRI). The pre-bolus phase-based venous output function (VOF) time integral was used for arterial input function (AIF) rescaling. Resulting cerebral blood flow (CBF) data for grey matter (GM) were compared with pseudo-continuous arterial spin labelling (ASL). During the main bolus CA passage, the apparent spatial shift (pixel shift) of the superior sagittal sinus (seen in single-shot echo-planar imaging (EPI)) was converted to CA concentration and compared with conventional ΔR2*-based data and with a predicted phase-based VOF from the pre-bolus experiment.

Results

The phase-based pre-bolus VOF resulted in a reasonable inter-individual GM CBF variability (coefficient of variation 28 %). Comparison with ASL CBF values implied a tissue R2*-relaxivity of 32 mM?1 s?1. Pixel-shift data at low concentrations (data not available at peak concentrations) were in reasonable agreement with the predicted phase-based VOF.

Conclusion

Susceptibility-induced phase shifts and pixel shifts are potentially useful for large-vein CA quantification. Previous predictions of a higher R2*-relaxivity in tissue than in blood were supported.
  相似文献   

11.

Objective

Purely phase-encoded techniques such as single point imaging (SPI) are generally unsuitable for in vivo imaging due to lengthy acquisition times. Reconstruction of highly undersampled data using compressed sensing allows SPI data to be quickly obtained from animal models, enabling applications in preclinical cellular and molecular imaging.

Materials and methods

TurboSPI is a multi-echo single point technique that acquires hundreds of images with microsecond spacing, enabling high temporal resolution relaxometry of large-R 2* systems such as iron-loaded cells. TurboSPI acquisitions can be pseudo-randomly undersampled in all three dimensions to increase artifact incoherence, and can provide prior information to improve reconstruction. We evaluated the performance of CS-TurboSPI in phantoms, a rat ex vivo, and a mouse in vivo.

Results

An algorithm for iterative reconstruction of TurboSPI relaxometry time courses does not affect image quality or R 2* mapping in vitro at acceleration factors up to 10. Imaging ex vivo is possible at similar acceleration factors, and in vivo imaging is demonstrated at an acceleration factor of 8, such that acquisition time is under 1 h.

Conclusions

Accelerated TurboSPI enables preclinical R 2* mapping without loss of data quality, and may show increased specificity to iron oxide compared to other sequences.
  相似文献   

12.

Objective

To investigate the precision and accuracy of a new semi-automated method for kidney segmentation from single-breath-hold non-contrast MRI.

Materials and methods

The user draws approximate kidney contours on every tenth slice, focusing on separating adjacent organs from the kidney. The program then performs a sequence of fully automatic steps: contour filling, interpolation, non-uniformity correction, sampling of representative parenchyma signal, and 3D binary morphology. Three independent observers applied the method to images of 40 kidneys ranging in volume from 94.6 to 254.5 cm3. Manually constructed reference masks were used to assess accuracy.

Results

The volume errors for the three readers were: 4.4 % ± 3.0 %, 2.9 % ± 2.3 %, and 3.1 % ± 2.7 %. The relative discrepancy across readers was 2.5 % ± 2.1 %. The interactive processing time on average was 1.5 min per kidney.

Conclusions

Pending further validation, the semi-automated method could be applied for monitoring of renal status using non-contrast MRI.
  相似文献   

13.

Objective

Determine the reliability of a magnetic resonance (MR) image segmentation protocol for quantifying intramuscular adipose tissue (IntraMAT), subcutaneous adipose tissue, total muscle and intermuscular adipose tissue (InterMAT) of the lower leg.

Materials and methods

Ten axial lower leg MRI slices were obtained from 21 postmenopausal women using a 1 Tesla peripheral MRI system. Images were analyzed using sliceOmatic? software. The average cross-sectional areas of the tissues were computed for the ten slices. Intra-rater and inter-rater reliability were determined and expressed as the standard error of measurement (SEM) (absolute reliability) and intraclass coefficient (ICC) (relative reliability).

Results

Intra-rater and inter-rater reliability for IntraMAT were 0.991 (95 % confidence interval [CI] 0.978–0.996, p < 0.05) and 0.983 (95 % CI 0.958–9.993, p < 0.05), respectively. For the other soft tissue compartments, the ICCs were all >0.90 (p < 0.05). The absolute intra-rater and inter-rater reliability (expressed as SEM) for segmenting IntraMAT were 22.19 mm2 (95 % CI 16.97–32.04) and 78.89 mm2 (95 % CI 60.36–113.92), respectively.

Conclusion

This is a reliable segmentation protocol for quantifying IntraMAT and other soft-tissue compartments of the lower leg. A standard operating procedure manual is provided to assist users, and SEM values can be used to estimate sample size and determine confidence in repeated measurements in future research.
  相似文献   

14.

Objective

To evaluate the feasibility of in vivo measurement of the fatty acid (FA) composition of breast adipose tissue by MRS on a clinical platform.

Material and methods

MRS experiments were performed at 3 T, using a STEAM sequence, on 25 patients diagnosed with breast cancer. MR spectra, acquired on healthy breast tissue, were analysed with the LCModel.

Results

The measured values of the saturated fatty acid (SFA), mono-unsaturated fatty acid (MUFA) and poly-unsaturated fatty acid (PUFA) fractions were 23.8 ± 7.1 %, 55.4 ± 6.8 % and 20.8 ± 4.4 %, respectively.The values of SFA, MUFA and PUFA observed in the current study are in the same range as those found in two previous studies performed at 7 T.

Conclusion

The results of the current study show that it is possible to quantify the fatty acid composition of breast tissue in vivo in a clinical setting (3 T).
  相似文献   

15.

Objective

To investigate the feasibility of magnetization transfer (MT) imaging in mice in vivo for the assessment of cortical bone.

Materials and methods

MT-zero echo time data were acquired at 4.7 T in six mice using MT preparation pulses with two different flip angles (FAs) and a series of ten different off-resonance frequencies (500–15000 Hz). Regions of interest were drawn at multiple levels of the femoral cortical bone. The MT ratio (MTR) was computed for each combination of FAs and off-resonance frequencies. T1 measurements were used to estimate the direct saturation (DS) using a Bloch equation simulation. Estimation of the absorption line width of cortical bone from T2* measurements was also performed.

Results

MTR values were higher using 3000° FA than 1000° FA. MTR values decreased toward higher off-resonance frequencies. Maximum mean MTR ± standard deviation (SD) of 58.57 ± 5.22 (range 50.44–70.61) was measured with a preparation pulse of 3000° and off-resonance frequency of 500 Hz. Maximum “true” MT effect was estimated at around 2–3 and 5 kHz, respectively, for 1000° and 3000° FA. Mean full width at half maximum ± SD of 577 ± 91 Hz was calculated for the absorption spectral line of the cortical bone.

Conclusion

MT imaging can be used for the assessment of cortical bone in mice in vivo. DS effects are negligible using preparation pulses with off-resonance frequencies greater than 3 kHz.
  相似文献   

16.

Objective

A newly adapted zoomed ultrafast low-angle RARE (U-FLARE) sequence is described for abdominal imaging applications at 11.7 Tesla and compared with the standard echo-plannar imaging (EPI) and snapshot fast low angle shot (FLASH) methods.

Materials and methods

Ultrafast EPI and snapshot-FLASH protocols were evaluated to determine relaxation times in phantoms and in the mouse kidney in vivo. Owing to their apparent shortcomings, imaging artefacts, signal-to-noise ratio (SNR), and variability in the determination of relaxation times, these methods are compared with the newly implemented zoomed U-FLARE sequence.

Results

Snapshot-FLASH has a lower SNR when compared with the zoomed U-FLARE sequence and EPI. The variability in the measurement of relaxation times is higher in the Look–Locker sequences than in inversion recovery experiments. Respectively, the average T1 and T2 values at 11.7 Tesla are as follows: kidney cortex, 1810 and 29 ms; kidney medulla, 2100 and 25 ms; subcutaneous tumour, 2365 and 28 ms.

Conclusion

This study demonstrates that the zoomed U-FLARE sequence yields single-shot single-slice images with good anatomical resolution and high SNR at 11.7 Tesla. Thus, it offers a viable alternative to standard protocols for mapping very fast parameters, such as T1 and T2, or dynamic processes in vivo at high field.
  相似文献   

17.

Objective

To quantify the periventricular venous density in neuromyelitis optica spectrum disease (NMOSD) in comparison to that in patients with multiple sclerosis (MS) and healthy control subjects.

Materials and methods

Sixteen patients with NMOSD, 16 patients with MS and 16 healthy control subjects underwent 7.0-Tesla (7T) MRI. The imaging protocol included T2*-weighted (T2*w) fast low angle-shot (FLASH) and fluid-attenuated inversion recovery (FLAIR) sequences. The periventricular venous area (PVA) was manually determined by a blinded investigator in order to estimate the periventricular venous density in a region of interest-based approach.

Results

No significant differences in periventricular venous density indicated by PVA were detectable in NMOSD versus healthy controls (p = 0.226). In contrast, PVA was significantly reduced in MS patients compared to healthy controls (p = 0.013).

Conclusion

Unlike patients with MS, those suffering from NMOSD did not show reduced venous visibility. This finding may underscore primary and secondary pathophysiological differences between these two distinct diseases of the central nervous system.
  相似文献   

18.

Objective

To evaluate three-dimensional T2-weighted fast spin echo triple inversion recovery sequences (STIR+) for the diagnosis of myocardial edema in patients with suspected early myocarditis after respiratory or gastrointestinal tract viral infection and at follow-up.

Materials and methods

We prospectively examined 28 patients with suspected myocarditis and 37 controls matched for gender and age. An ECG-triggered STIR+ was used to cover the entire left ventricle in short-axis images with 10-mm slice thickness and no interslice gap. The global signal intensity ratio (heart muscle in relation to skeletal muscle) was calculated (global STIR+ ratio) to evaluate edema. All patients had repeat examinations at follow-up (mean interval 4.9 months, 1–12 months).

Results

The mean global STIR+ ratio was 2.15 ± 0.4 in the initial examination of patients as compared to 1.78 ± 0.3 in controls (p < 0.0001) and 1.89 ± 0.3 in patients at follow-up (p = 0.0001 vs. first visit). Left ventricular ejection fraction did not differ between patients and controls at baseline and at follow-up.

Conclusion

We could identify a significantly higher global STIR+ ratio in patients with suspected myocarditis compared to controls, and a dynamic change during follow-up. The global STIR+ ratio may, therefore, be useful for the diagnosis of myocarditis and should be further explored.
  相似文献   

19.

Objective

Recent MRI studies have shown that the orientation of nerve fibres relative to the main magnetic field affects the R2*(= 1/T2*) relaxation rate in white matter (WM) structures. The underlying physical causes have been discussed in several studies but are still not completely understood. However, understanding these effects in detail is of great importance since this might serve as a basis for the development of new diagnostic tools and/or improve quantitative susceptibility mapping techniques. Therefore, in addition to the known angular dependence of R2*, the current study investigates the relationship between fibre orientation and the longitudinal relaxation rate, R1 (= 1/T1), as well as the apparent water content.

Materials and methods

For a group of 16 healthy subjects, a series of gradient echo, echo-planar and diffusion weighted images were acquired at 3T from which the decay rates, the apparent water content and the diffusion direction were reconstructed. The diffusion weighted data were used to determine the angle between the principle fibre direction and the main magnetic field to examine the angular dependence of R1 and apparent water content.

Results

The obtained results demonstrate that both parameters depend on the fibre orientation and exhibit a positive correlation with the angle between fibre direction and main magnetic field.

Conclusion

These observations could be helpful to improve and/or constrain existing biophysical models of brain microstructure by imposing additional constraints resulting from the observed angular dependence R1 and apparent water content in white matter.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号