首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the modern wind turbine is becoming larger and more complex, with the wind rotor exceeding hundreds of meters in diameter. The blade shear force is also becoming increasingly serious below the rated wind speed, which leads to structure fatigue loads and instability of the generator power. For improving the dynamic performance of large wind turbines, it was proposed that individual pitch control (IPC) method was operated below the rated wind speed. In this paper, we analyze the relationship between the aerodynamic characteristics of blades and the nonlinear time‐varying pitch control system based on wind shear and the tower shadow effect. The combination of IPC and torque control is used to optimize the control mode of the wind turbine. By fine‐tuning the pitch angle, the unbalanced force on the wind rotor was relieved to achieve the purpose of mitigating fatigue loads. Finally, our experimental results prove the validity of the proposed IPC method below the rated wind speed by showing that it can improve power quality and reduce fatigue loads of the key components without reducing the generator output power. © 2016 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

2.
This paper proposes a new approach for disconnection control of wind power generators to reduce the frequency fluctuation caused by wind power. The approach is based on the correlation between frequency and total output of wind power generators and the turbulence degrees of individual wind power generators. At a control center, frequency and all the outputs of wind power generators are monitored, and the correlation and the turbulence degrees are computed on‐line. If the large variation of frequency is detected, then whether the variation comes from the wind power generators or loads is checked by using the correlation. When the wind power generators cause the frequency variation, the wind power generator with maximum turbulence degree is searched and disconnected from the power systems. This search and disconnection process is repeated until the correlation reaches the level where the frequency variation observed is not caused by the wind power generators. The effectiveness of the proposed approach was confirmed with the simulation studies of a two‐area interconnected power system including many wind power generators. The results show that the correlation and the turbulence degree are useful for the reduction of frequency fluctuation so as not to disconnect too many wind power generators. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 171(1): 10–18, 2010; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20911  相似文献   

3.
Independent distributed power generation using small wind turbines is becoming more widespread as wind power generation increases. Installation of small wind turbines in densely populated urban areas is not only useful from the viewpoint of extracting wind power sources in weak‐wind areas but also for making renewable energy easier to access when power supplies are closer to consumers. It is from this point of view that the authors proposed “urban wind power generation” using a collective system with a number of small vertical wind turbines, and have developed a suitable generator for low‐speed vertical wind turbines such as a Savonius windmill. Based on a standard coreless generator, the proposed generator is designed to make the direction of the magnetic flux radial in order to install the magnets and coils on the outer end of the generator. The change of magnet composition and flux direction maximizes the speed of the flux change and output voltage within a limited space. With the above configuration, the power of the proposed generator is independent of the diameter. In this report, the authors describe and evaluate the fundamental performance of a prototype of the proposed generator. Based on the experiments, a maximum output power of 283 W was obtained. The obtained starting torque is small enough to begin rotation under weak wind conditions of no more than 1 m/s. Therefore, it is clear that the proposed “radial” coreless generator is suitable for self‐starting and producing high power at low wind speed. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 167(1): 26– 34, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20695  相似文献   

4.
Recently, doubly fed induction generators (DFIG) and synchronous generators have been applied mostly to wind power generation, and variable speed control and power factor control have been implemented for high efficiency of wind energy capture and for high quality of power system voltage. In variable speed control, the wind speed or generator speed is used for maximum power point tracking. However, the properties of wind generation power fluctuations due to wind speed variation have not yet been investigated for those forms of control. The authors discuss power smoothing by these forms of control for DFIG interconnected to a 6.6‐kV distribution line. The performance is verified by means of the power PSCAD/EMTDC system simulation software for actual wind speed data and is investigated by using an approximate equation for wind generation power fluctuations as a result of wind speed variation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 177(2): 10–18, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.20958  相似文献   

5.
This paper proposes sensorless output power maximization control of a wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information on wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(2): 11–19, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20043  相似文献   

6.
The transverse flux permanent magnet synchronous generator has a great potential for use in direct‐drive wind energy conversion systems due to its large pole numbers, high torque, and power density. This research work develops dynamic model of a single‐side transverse flux permanent magnet synchronous generator for use in a small‐scale gearless wind energy conversion system. For acquiring the parameters of the considered generator, required for dynamic modeling, 3D finite element model of the machine is developed and analyzed in both magneto‐static and transient modes. Field‐oriented control approach is employed for tracking maximum power point from the variable wind speed. The simulation results illustrate an accurate response of the system to the wind speed variation and proper performance of the developed dynamic model and control approach of the system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
This paper proposes a maximum output power control system for variable‐speed small wind generators. The proposed control system adjusts the rotational speed of a single‐phase AC generator to the optimum rotational speed, which yields the maximum output power according to the natural wind speed. Since this adjustment is performed on‐line in order to adapt to variations in wind speed, the rotational speed of the single‐phase AC generator is adjusted by controlling the generated current flowing in an FET (field‐effect transistor) device, serving as the generated power brake, which is linked directly to the single‐phase AC generator. In order to reduce heat loss from the FET device, a PWM (pulse width modulation) controller is introduced. An experimental model of the proposed control system was built and tested, and the validity and practicality of the proposed control system were confirmed by the experimental results. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 165(1): 9–17, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20692  相似文献   

8.
This paper focuses on selection of wind turbine generation systems that include generators, converters, and gears. We study three systems: a permanent magnet generator (PMG) system, a doubly‐fed generator (DFG) system, and a synchronous generator (SYG) system in terms of the system efficiencies and running costs. The system efficiencies and running costs are calculated by considering the relationship between wind power and wind conditions. According to these results, the one‐step gear PMG system is the best choice for a large wind turbine system. © 2007 Wiley Periodicals, Inc. Electr Eng Jpn, 161(1): 51–57, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20506  相似文献   

9.
This paper describes a novel approach of maximum power control for small wind turbines by using predicted wind speed data. Because of the moment of inertia of the wind turbine, when using conventional control method, the time lag of control will occur due to turbulence in the environment. Our proposed control system uses future information, which is the predicted wind speed, for wind turbine control. The control algorithm creates a reference trajectory of the rotational speed of the wind turbine. The advantage of using the predicted data is that the controller can operate the wind turbine efficiently so that the rotational speed of the wind turbine catches up with the reference speed at the maximum power point. Simulation results show improvement of generation efficiency compared to the conventional control method. Then we discuss the influence of the prediction error of wind speed on control performance. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

10.
This paper proposes a wind turbine emulator (WTE) based on the blade momentum theory, and tests the variable‐speed wind power generation system using a pulse‐width modulation (PWM) converter to verify the accuracy of the emulator. The behavior of the wind turbine for natural wind is reproduced by the WTE based on the proposed theory. The variable‐speed wind power generation system employs a vector control system to control the torque and speed of the permanent magnet synchronous generator in the converter side. The windmill rotational speed is controlled to maximize the efficiency of the wind turbine against wind velocity. And the active power and reactive power are controlled in the inverter side, and the generated power is sent to the grid while controlling the DC link voltage to be constant at the same time. The behaviors of the WTE are compared with the simulation results and experimental results using a real wind turbine. These experimental and simulation results show that the test bench with the proposed WTE has sufficient performance and accuracy to verify variable‐speed wind generator systems. © 2015 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

11.
大型风机的独立变桨控制方法   总被引:6,自引:0,他引:6       下载免费PDF全文
为了缓解风力发电机组由于风速扰动所造成的疲劳载荷,给出了一种基于RBF神经网络滑模独立变桨控制策略。通过分析风力机的基本特性,提出将RBF神经网络滑模功率控制单元和独立变桨控制单元相结合的控制方式。RBF神经网络滑模功率控制单元通过对发电机电磁转矩及桨叶桨距角的控制来平衡风力机的气动转矩,使风轮保持额度转速,实现稳定风电机组的输出功率的目的。而RBF神经网络独立变桨滑模控制单元通过实时微调风机桨距角,来优化功率控制单元的统一桨距角信号,实现缓解风机结构疲劳载荷的目的。最后,通过建立基于RBF神经网络滑模独立变桨控制的风力发电机组进行相应的仿真与实验,证明基于RBF神经网络功率控制和独立变桨滑模控制相结合的方法具有良好的控制效果,稳定风机输出功率的同时,极大地缓解风机的结构载荷,降低风力发电机组的维护成本。  相似文献   

12.
In this paper, grid‐connection of wind power generators was evaluated from the viewpoint of frequency fluctuation. Wind power generation is a power generation method that depends on natural energy, and there is some concern that it may exert a negative influence on electric power quality. As a result, it is necessary to maintain high electric power quality when wind power generation is connected to the grid. The AC link method, the AC‐DC link method, and the DC link method are alternatives for grid connection of wind power generators. The model system was constructed with the use of a synchronous generator and an induction generator as wind power generator, and verification experiments were performed. Verification experiments using the various grid‐connection methods for each generator were conducted. The steadiest frequency characteristic was obtained in the DC link method. In particular, the stability level was highest in the wind power generation system using the DC link method with a wound‐rotor induction generator. Generally, induction generators are grid‐connected by the AC link method. Therefore, grid‐connection of induction generators by the DC link method appears effective from the viewpoint of frequency fluctuation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 178(3): 21–30, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21196  相似文献   

13.
In the current wind turbine generation system, there are substantial problems such as the fact that the maximum power of the wind turbine cannot be obtained in the presence of fluctuating wind speed, as well as high cost and low annual net electricity production (due to mismatch between generators and wind turbines). A new wind turbine generator optimized for the wind turbine output is presented in order to solve such problems. This wind turbine generator consists of a permanent magnet generator, a reactor, and a rectifier, and uses neither a control circuit which requires standby electricity nor a PWM converter having a switching element. By selecting the most appropriate combination of a permanent magnet generator with multiple windings and a reactor connected in series with each winding, the maximum output of the wind turbine can be obtained without using a control circuit. The new wind turbine generator was directly coupled with a straight‐wing nonarticulated vertical‐axis wind turbine (SW‐VAWT), and matching of the generator with the wind turbine was examined in field tests. The test results and review confirm that the new wind turbine generator is highly matched with the wind turbine in the presence of fluctuating wind speed. © 2010 Wiley Periodicals, Inc. Electr Eng Jpn, 174(2): 26–35, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21036  相似文献   

14.
基于风力机特性的风电机组潮流计算   总被引:1,自引:0,他引:1  
在风力机特性方程和异步发电机的稳态等值模型基础上,建立了基于风力机特性的风电机组潮流计算数学模型。考虑风力机特性方程中的风力机机械力矩和发电机电磁力矩平衡,将风电机组引入处作为功率可变的PQ节点,异步发电机则作为RX等值电路模型,进行了风电机组的潮流计算。该方法引入定子电压,定子电流和转子滑差的修正量,将风力机特性方程中的风速、风能利用系数、尖速比等相关参数引入到潮流计算过程中,通过与常规的牛顿-拉夫逊潮流计算相结合,修正相应的雅可比矩阵来完成,从而保证了潮流计算迭代过程的完整性。该模型既具有传统风电机组RX模型的优点,又可以保证牛顿-拉夫逊方法的平方收敛性。最后,通过2个算例进行了潮流计算,证明了其正确性。  相似文献   

15.
尾流效应严重降低风电机组的功率输出。目前解决尾流效应的主要方法是优化风场布局,这对于已建成的风电场而言是不现实的。相比之下,偏航控制可以使尾流发生偏移,降低尾流效应的影响、提升机组发电能力。文章采用两台激光雷达测风仪和SCADA系统,在某风场开展实验。以此为基础,文章分析了机组不同位置流场特性。根据尾流偏移的原理,分析了不同偏航角度下,两台机组总功率的变化情况。结果表明:对于实验的两台机组来说,偏航不超过45°时能有效提高两台机组的总体输出功率,最大增幅约17.6%。可见,上游风机偏航虽然降低了自身发电功率,但其尾迹偏移能有效提高下游风机的输出功率,可以在风电场应用。  相似文献   

16.
风力发电系统中,风力发电机的控制方法是个关键环节.对双馈变速恒频异步风力发电机现有的控制方法进行了研究,提出一种新颖的控制扰动方法,即将四风速模型中的合成风速在轴系模型中产生的转矩引入功率控制扰动中.  相似文献   

17.
For the stability of power systems including large‐scale generation of wind power, wind farms are expected to fulfill the requirement with the capability to remain connected to the systems during a momentary voltage dip occurring in power networks. This has prompted many utilities to adopt the low‐voltage ride‐through (LVRT) of wind turbine generators (WTGs) as one of the requirements in interconnection of large wind farms. This paper presents a new method of pitch angle control for fixed‐speed wind turbine (FSWT) to achieve LVRT capability improvement. The FSWT is equipped with directly grid‐coupled squirrel‐cage induction generator and the LVRT behavior of such wind turbine is closely related to the overspeeding of wind turbine rotor during voltage dip. If the turbine rotor speed can be reduced quickly during voltage dip so as not to rise over the maximum speed, then the sudden disconnection of WTG can be avoided. The proposed pitch control system can modify the pitch angle in the short response time by the coordination of protective relay. Then the pitch angle is adjusted by a feedback proportional integral controller based on the measurement of induction generator terminal voltage. Simulation study shows that the application of the proposed pitch control system can improve the LVRT performance of a wind farm equipped with FSWTs. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

18.
对于实现风电机组最大功率点跟踪的最优转矩控制,通过适当减小转矩增益可以有效提升风能捕获效率。但现有研究发现,变化的湍流风速条件不仅会改变最佳转矩增益系数,还会影响用于寻优该值的自适应算法的收敛性能,进而导致难以提高甚至降低风能捕获效率的问题。为此,通过分析风速条件变化影响自适应算法的机理,发现了导致该算法搜索方向持续出错而恶化风能捕获效率的风速条件渐变良好场景。在此基础上,提出了考虑变化湍流风速条件的改进自适应转矩控制,通过引入动态风能捕获损失量指标识别出此类场景,结合中断与重启搜索机制,防止自适应算法搜索发散,从而提升风电机组发电效率。最后,基于风电机组传动链模拟实验平台,分析验证所提方法的有效性。  相似文献   

19.
文章以变速恒频风电机组为研究对象,依据国家标准(GB/T 19963-2011),在分析双馈风电机组结构基础上,建立了双馈风力发电机组的数学模型和控制模型。为了使风电场获得最优效益,针对有功功率控制,提出了转矩和桨距角联合调控策略,并对转矩和桨距角联合调控能力进行仿真对比;针对无功功率控制,给出了单位功率因数调控最优策略。仿真与实验表明,该策略达到良好的控制效果。  相似文献   

20.
兆瓦级风力机特性模拟器   总被引:1,自引:1,他引:0  
针对传统的风力机特性模拟器只能对等功率风力机特性进行模拟的缺点,开发了一套新型的兆瓦级风力机模拟器实验平台。首先对实际风力机静态和动态转矩特性进行了分析,搭建了由变流器、异步电机和减速箱构成的风力机模拟实验平台,采用矢量控制方案分别对异步电机和发电机进行转矩和转速控制,使减速机输出的转速符合兆瓦级风力机实际运行的工况特性。在MATLAB/Simulink环境中,分别对风速变化和转速变化2种情况进行了仿真分析,结果表明该方案能准确模拟兆瓦级风力机的运行特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号