首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对目前电网在负荷预测中所采集到的数据普遍存在着特征维度较少;特征关系不明;有效数据量较少的特点,为了提高电网短期负荷预测精度,本文提出一种基于XGBoost算法的新型负荷预测模型。基于XGBoost算法的负荷预测模型采用CART树作为基学习器,输入预处理后的历史负荷和特征数据,通过构建多个弱学习器逐层训练模型并得到模型,最后向模型输入测试集特征得到最终的预测结果。本文所搭建的负荷预测模型具有避免对数据特征的标准化、处理字段缺失的数据、不用关心特征间是否相互依赖、学习效果好的优点。根据真实电网数据实验结果,基于XGBoost算法的负荷预测平均绝对误差百分比下降到3.46%,比本文所对比的基于BP、GRNN、DBN神经网络的负荷模型预测值精度更高,表明本文所提模型的优越性。  相似文献   

2.
大量随机冲击负荷(炼钢厂、轧钢厂)接入系统给负荷预测造成困难,使得短期负荷预测精度下降。首先就冲击负荷地区的负荷特征进行分析,找出影响负荷预测精度的原因,提出利用小波变换对负荷序列进行多尺度分解,得到在不同频段下负荷子序列,重点针对各负荷分量不同特点,建立含不同输入量的贝叶斯神经网络预测模型,再将预测结果进行小波重构,从而得出最后预测结果。再与另两种模型进行对比,结果表明该方法能提高冲击负荷地区的短期负荷预测精度。  相似文献   

3.
针对短期负荷预测精度问题,提出一种基于Prophet加法模型和长短期记忆LSTM(long-short term memo?ry)网络的组合模型的短期负荷预测方法.首先分别建立Prophet预测模型和LSTM预测模型,然后采用最小二乘法对两种方法取不同的权重组合,得到新的模型并进行预测.以2014年全球能源预测竞赛(GEFCom2014)的电力负荷数据作为算例验证.实验结果表明,与ARIMA模型预测方法、随机森林模型负荷预测模型方法和标准Prophet和LSTM负荷预测方法相比,所提负荷预测方法所得结果具有更高的预测精度.  相似文献   

4.
随着智能电网技术的飞速发展,对负荷预测的精度提出了越来越高的要求。融合负荷、天气等多源数据,提出了一种基于数据融合的支持向量机精细化负荷预测方法。首先对负荷历史数据进行聚类分析,将运行日分成六类。然后将负荷数据和温度、湿度等天气数据进行融合,针对六类聚类结果分别建立基于数据融合的支持向量机精细化负荷预测模型,并对模型参数进行全局优化。采用不同的预测模型对浙江省某地级市2013年的负荷进行预测,结果表明所提出的负荷预测方法的预测精度明显高于传统的负荷预测方法的预测精度。  相似文献   

5.
城市电网核心区负荷变化复杂,影响因素众多,对电网调度部门的安全运行提出了挑战。基于南京电网实际负荷数据,分析了负荷变化特性及各类影响负荷变化的因素,同时针对预测方法中存在的边缘效应等问题,通过改进训练策略,提出了一种新的人工神经网络短期负荷预测模型。该模型采用多隐含层和动态神经元个数的预测方法,对不同神经元预测结果进行比较,以达到预测负荷的目的。预测结果表明,基于该方法建立的预测模型适用性强且能获得较高的预测精度,可为城市核心区的短期负荷预测提供可行方案。  相似文献   

6.
精准的短期负荷预测是实现电网精益化运行和管理重要保障,但存在短期负荷波动性强、负荷预测关键影响因素选取困难等精准预测难题。本文利用变分模态分解将原始电力负荷数据分解为多个子序列,挖掘短期负荷波动特征的同时避免模态混叠问题,提出复合变量选取算法分析筛选影响负荷波动的关键因素,有效去除预测干扰信息并进一步简化预测模型的复杂度,通过兼顾数据短期依赖和长期依赖的长短时记忆神经网络对各子序列进行预测,并将各子序列预测结果进行叠加实现最终的短期负荷预测,据此建立基于变分模态分解和复合变量选取的短期负荷预测方法。选取2019整年长沙市实际数据验证结果表明,本文提出算法在复杂外部影响因素下,能准确筛选负荷预测的关键影响因素,相比传统预测模型,提出模型结构更简单、预测精度更高。  相似文献   

7.
为了考虑除负荷本身外的其他因素对短期负荷的影响,提出了基于相似度与神经网络的短期协同预测模型.该模型首先通过计算负荷曲线的相似度对历史数据进行排序,然后选择与预测时刻相似度较相近的数据对未来时刻的负荷利用相似度进行预测,对于出现的误差,通过神经网络结合其他因素进行预测纠正.实验结果证明,该协同预测模型较之单纯的BP神经网络预测模型具有较高的预测精度.  相似文献   

8.
《高电压技术》2021,47(8):2885-2895
历史数据在电力负荷预测中必不可少,但选用的历史数据往往存在数据量虽大而数据特征维度少、无效数据多、数据间的特征关系不明确等问题,显著影响电力负荷预测的精度。为提高超短期电力负荷预测精度,提出一种基于双层XGBoost(eXtreme gradient boosting)算法的超短期电力负荷预测方法。该方法的第1层,即数据处理层,基于XGBoost算法及特征工程,构建多个弱学习器逐层训练,筛选出对电力负荷具有显著影响的特征集;第2层即负荷预测层,以第1层筛选出的特征集和负荷为输入,优化选择XGBoost算法的超参数并对模型进行训练以得到精度最高、均方根误差最小的负荷预测模型。所搭建的负荷预测模型能够避免对数据特征进行标准化处理,且可减小数据字段缺失的影响,不用考虑特征间是否相互依赖,且模型学习效果好。算例分析中,对比基于单层XGBoost、BP神经网络、ARIMA的负荷预测模型,所提方法预测值精度更高,且在不同时间段数据集下,具有良好的泛化能力。  相似文献   

9.
针对分布式电源和新型负荷的容量累积造成负荷影响因素多元化和不确定性特性增强的问题,提出一种采用记忆神经网络和曲线形状修正的负荷预测方法。在负荷峰值预测中,采用最大信息系数计算负荷峰值与影响因素的非线性相关性,实现对输入特征的筛选;综合考虑负荷峰值序列的长短期自相关性和输入特征与负荷峰值的不同程度相关性,结合Attention机制和双向长短时记忆神经网络(Bidirectional long short-term memory, BiLSTM)建立负荷峰值预测模型。在负荷标幺曲线预测中,通过误差倒数法组合相似日和相邻日建立负荷标幺曲线预测模型;针对预测偏差的非平稳特征,利用自适应噪声的完全集成经验模态分解和BiLSTM网络建立误差预测模型对曲线形状进行修正。应用中国北方某城市的区域电网负荷数据为算例,验证了所提模型的有效性。  相似文献   

10.
为了充分考虑城市发展变化的多元性与预测电力负荷过程中的各种影响变量,提高电网规划中电力负荷的预测精度,本文提出了基于计量经济-灰色理论的多变量电力负荷预测方法。该方法首先通过电力负荷与各变量之间的相关性分析,确定预测过程中与电力负荷强度相关的各影响变量。然后利用统计学中的计量经济理论,找到彼此之间的联系,建立电力负荷与各变量之间的数学预测模型。最后再利用灰色理论对目标年各变量的值进行预测,以解决数据匮乏、波动的不确定性所带来的难题,并带入数学模型,完成预测。工程实例验证了该方法是正确和有效的。  相似文献   

11.
空间负荷预测对配电网规划建设具有重要意义。为了提高配电网空间负荷预测精度,文中提出基于熵权法与灰色关联分析-极限学习机(GRA-ELM)的配电网空间负荷预测方法。首先,将规划区域内的小区按用地性质划分,分析不同类型负荷的影响因素,建立空间负荷密度指标体系;其次,利用熵权法对不同类型负荷的负荷密度指标进行权重分配;然后,应用GRA挑选出与待测地块负荷密度指标相似的训练样本;最后,将样本带入经粒子群优化(PSO)算法参数处理后的极限学习机(ELM)进行训练,得到预测结果。通过实例对所提方法的性能进行仿真验证,结果表明,所提方法相对其他方法的空间负荷预测精度更高。  相似文献   

12.
基于GRU-NN模型的短期负荷预测方法   总被引:3,自引:0,他引:3       下载免费PDF全文
目前基于统计分析和机器学习的预测方法难以同时兼顾负荷数据的时序性和非线性特点。文中提出了一种基于GRU-NN模型的短期电力负荷预测方法。该方法基于深度学习思想处理不同类型的负荷影响因素,引入门控循环单元(GRU)网络处理具有时序性特点的历史负荷序列,建模学习负荷数据内部动态变化规律,其输出结果与其他外部影响因素(天气、日类型等)融合为新的输入特征,使用深度神经网络进行处理,整体分析特征与负荷变化的内在联系,最后完成负荷预测。以美国某公共事业部门提供的公开数据集和中国某地区的负荷数据作为实际算例,该方法预测精度分别达到了97.30%和97.12%,并与长短期记忆神经网络、多层感知机以及GRU神经网络方法进行对比,实验结果表明所提方法具有更高的预测精度和更快的预测速度。  相似文献   

13.
电力负荷预测结果的准确性对电力系统安全稳定运行具有重要意义。针对多气象因素影响下的短期负荷预测任务,提出改进Apriori关联度分析及飞蛾火焰优化的长短时记忆神经网络算法的电力负荷短期预测新方法。首先,提出改进Apriori算法分析气象因素与负荷之间的关联程度。依据分析结果除去非必要气象影响因素,并在此基础上引入人体舒适度评价指标。其次,将降维后气象数据结合地区负荷数据作为模型输入。最后,基于长短时记忆神经网络进行短期负荷预测建模,并结合飞蛾火焰优化算法的全局寻优能力来优化模型。通过对某地区负荷数据协同气象数据进行对比预测试验,测试结果表明该负荷预测模型能有效提升地区电网短期负荷预测性能。  相似文献   

14.
精准的短期负荷预测对电力系统制定合理生产计划、提高经济效益、保证电网安全运行具有重要意义.为学习非线性负荷数据中隐含的深层关系,提高短期负荷预测精度,文中提出一种基于条件生成对抗网络的短期负荷预测模型.所提模型使用卷积神经网络构建生成模型和判别模型,以负荷影响因素作为条件,并引入特征损失函数作为判别模型部分隐藏层的损失函数.然后,通过条件生成对抗网络的博弈训练,使生成模型以负荷影响因素为条件生成预测负荷数据,从而进行短期负荷预测.最后,以美国某地区3年的负荷作为实际算例,对比所提模型与其他模型的预测结果,验证了所提模型在兼顾泛化能力的同时可以提高短期负荷的预测精度.  相似文献   

15.
基于解耦机制的小地区短期负荷预测方法   总被引:1,自引:0,他引:1  
小地区短期负荷预测是电网企业精细化管理的重要手段。针对小地区短期负荷预测的特点,提出了基于解耦机制的误差分析模型和预测机制,将短期负荷预测分为负荷水平预测和标幺曲线预测两部分。小地区负荷结构单一,标幺曲线相对稳定;负荷基数较小,负荷水平的波动比较明显;标幺曲线和负荷水平受不同因素的影响,影响机理不同,分别预测有利于提高预测精度。提出了标幺曲线和平均负荷预测方法,理论分析和实践均证明,该方法能较好地把握负荷发展规律,提高了标幺曲线和平均负荷的预测精度,使总预测效果得到了改善。  相似文献   

16.
林芳  林焱  吕宪龙  程新功  张慧瑜  陈伯建 《中国电力》2018,51(10):88-94,102
为提高电力负荷预测精度,应对海量、高维数据带来的单机计算资源不足的问题,提出一种基于均衡KNN算法的短期电力负荷并行预测方法。针对电力负荷数据特征,采用K均值聚类算法进行电力负荷场景划分;为提高场景划分精度,采用反熵权法量化负荷特征的权重系数;针对不均衡的负荷场景,提出均衡KNN算法对待预测负荷进行精确的场景归类;采用BP神经网络算法对海量历史数据进行负荷预测模型的分场景训练与预测;采用ApacheSpark架构对提出的模型进行并行化编程,提高其处理海量、高维数据的能力。选取某小区居民用电数据进行算例分析,在30节点云计算集群上进行测试验证,结果表明基于该模型的负荷预测精度与执行时间均优于传统预测算法,且提出的算法具有优异的并行性能。  相似文献   

17.
为充分挖掘不同气象因素的相似日信息和输入特征蕴含的信息以提升负荷预测精度,提出一种基于时间卷积网络和长短期记忆网络组合(TCN-LSTM)和气象相似日集的电网短期负荷预测方法。首先通过Pearson系数和最大信息系数,选出与负荷强相关的气象因素;然后根据该气象因素,选取最佳相似日组成气象相似日集,以气象相似日集负荷、历史负荷、气象因素和时间因素作为预测模型的输入特征;最后,搭建TCN-LSTM预测模型,用TCN进行特征提取后,再用LSTM网络完成短期负荷预测。以中国某地区的实际历史数据进行仿真验证,结果表明所提预测方法可有效提升负荷预测精度。  相似文献   

18.
为提高母线负荷预测精度,提出一种基于多级负荷智能协调的母线短期负荷预测方法。首先对预测母线负荷序列进行历史负荷与当前负荷的相关性分析,再进行系统空间母线与预测母线的相关性分析,根据两次相关性分析结果合理设置算例,得到预测网络的最优输入方式,然后利用长短时记忆网络(LSTM)建立母线短期负荷预测模型,最后运用吉林省某地区的实测数据将提出模型与反向传播(BP)神经网络和支持向量机(SVM)的预测结果进行对比分析,验证本文提出的预测模型具有更高的精确度。  相似文献   

19.
为减少天气因素对短期电力负荷预测效果的影响,提高模型的预测精度,提出了一种基于天气分类和卷积神经网络的短期负荷预测模型。首先通过天气类型初分将原始数据样本集划分为晴天、阴天、多云和雨天4种类型。其次,为了识别相似气象条件,运用相关系数和k均值聚类方法,找到对新型负荷出力影响最大的气象因素,并对其聚类,选取高相似度的数据样本。之后根据特征选择的结果,构造神经网络输入数据集。最后,将该数据集输入至卷积神经网络训练并预测。通过算例验证分析所提模型具有更高的预测精度。  相似文献   

20.
多元指数加权电力负荷灰色优化组合预测   总被引:16,自引:3,他引:13  
由于电力负荷具有增长性和波动性并且受到多个因素影响,使得电力负荷的变化呈现出复杂的多元性及非线性组合特性,对于这种具有复杂的多元性及非线性组合特性的序列,使用传统的模型进行预测,预测精度往往不理想.为了提高预测精度,作者为提出了多元指数加权电力负荷灰色优化组合预测模型.其中灰色优化组合预测模型用于进行非线性增长趋势的电力负荷预测,指数加权法能解决历史负荷的波动性问题.实际算例表明,所提出的方法由于综合考虑了电力负荷的多种特性,能有效地提高负荷预测精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号