首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
潜供电弧的仿真分析   总被引:6,自引:1,他引:6  
介绍了超高压输电线路上产生潜供电弧的机理。基于电路原理得出恢复电压和潜供电流的数学表达式,运用MATLAB编程得到恢复电压和潜供电流的数值。通过SIMULINK组建模块,仿真整个电路,得到恢复电压和潜供电流的波形图和数值。分析快速接地开关抑制潜供电弧的机理,在线路上安装快速接地开关,选用电动弹簧操作机构来提高HSGS的关合速度,降低弧道上的潜供电流和恢复电压,减少了潜供电弧的熄灭时间,从而确保了单相自动重合闸的成功。  相似文献   

2.
特高压快速接地开关的研制   总被引:1,自引:0,他引:1  
特高压输电线路上,潜供电弧对线路产生的影响不容忽视,潜供电弧的顺利熄灭是实现单相自动重合闸的必要条件.稳态下潜供电流和恢复电压幅值是潜供电弧熄灭的两个决定性因素.快速接地开关作为重要的电器设备,越来越多的应用于电力系统中.快速接地开关除了在系统发生故障时接地外,还能快速关合潜供电流和降低恢复电压.本文根据750kV系统潜供电弧的特点和熄弧要求,研制了一种快速接地开关,着重对触头系统进行了研究,计算了触头压力、触头电动力及断口开距的大小,给出了快速接地开关整体设计思路和结构图.  相似文献   

3.
使用快速接地开关(HSGS)是熄灭潜供电弧的一种有效方法。采用HSGS后线路上维持潜供电弧存在的潜供电流和恢复电压都有很大程度的降低,确保了潜供电弧的自熄。TNA实验和利用EMTP进行的数值计算证明了上述论点。  相似文献   

4.
快速接地开关熄灭同杆双回输电线路潜供电弧的研究   总被引:8,自引:0,他引:8  
由于同杆双回线间较强的耦合作用,造成潜供电弧不易自熄,影响了单相自动重合闸的成功率,必须采取措施熄灭潜供电弧.在分析了各种熄弧措施的特点后,提出采用快速接地开关(HSGS)熄灭同杆双回线的潜供电弧.利用相模变换的方法和EMTP计算了采用HSGS后线路的潜供电流和恢复电压,结果表明HSGS用于同杆双回输电线路可显著减小故障相上的恢复电压和潜供电流,使潜供电弧可靠熄灭.  相似文献   

5.
潜供电弧是发展特高压半波长输电技术面临解决的关键问题之一。文中首先采用分段法建立了基于分布参数的潜供电弧数学模型,分析快速接地开关(high speed grounding switch,HSGS)对半波长输电线路潜供电弧的抑制作用;其次,建立半波长输电线路电磁暂态模型,分析快速接地开关限制因素对抑制效果的影响;最后,给出了快速接地开关沿线非均匀配置方法,获得了较优的快速接地开关配置方法。研究表明:HSGS投入时间对潜供电流抑制效果影响不大,为保留足够的时间裕度,应取值150 ms。HSGS接地电阻对潜供电流抑制效果影响较大,应小于1.5Ω。半波长输电线路采用沿线非均匀9组HSGS的配置方法,可有效抑制其潜供电流。  相似文献   

6.
以浙北—上海交流特高压同塔双回输电线路为例,计算了线路发生单相接地故障及双回同名故障后的潜供电流和恢复电压,分析了快速接地开关(high speed grounding switch,HSGS)对潜供电弧的限制效果,研究了HSGS的接地电阻对潜供电弧限制效果的影响。仿真结果表明:HSGS可以快速熄灭交流特高压同塔双回线路的潜供电弧,保证单相自动重合闸的成功率。  相似文献   

7.
快速接地开关在同杆双回输电线路中的应用   总被引:5,自引:2,他引:3  
同杆双回线路的耦合使潜供电弧不易自熄 ,影响了单相自动重合闸的应用。解决办法是采用快速接地开关 (HSGS)熄灭潜供电弧。利用EMTP仿真计算某实际线路的结果表明 :采用HSGS后 ,大大减小了潜供电流和恢复电压 ,可有效熄灭潜供电弧 ,提高单相自动重合闸的成功率。  相似文献   

8.
刘洋  李响 《东北电力技术》2014,35(12):24-28
为使自动重合闸在特高压输电线路发生瞬时性故障后能可靠重合,必须对潜供电流和恢复电压值加以限制。结合浙北—上海交流特高压同塔双回输电线路,运用电磁暂态仿真程序ATP/EMTP,考虑了故障一次电弧模型及潜供电弧模型,研究了采用快速接地开关(HSGS)对潜供电弧的抑制效果。研究表明,采用HSGS更适用对于故障点处位于线路两端及中间接地故障的限制,且对单相接地故障的限制效果要优于两相接地故障。对于单相接地故障,两侧HSGS开关动作有0.2~0.3 s时间间隔时,限制效果更佳;HSGS接地电阻取值为0.1~0.5Ω抑制效果较好。  相似文献   

9.
特高压平行双回线路可以使用高速接地开关(highspeed grounding switch,HSGS)熄灭瞬时性单相接地故障及双回线跨线故障产生的二次电弧。文章分析了使用HSGS降低潜供电流和恢复电压的效果,特高压双回线路中各种因素对其熄灭二次电弧的影响。结果表明,双回线跨线瞬时性故障比单相接地瞬时性故障的潜供电流和恢复电压大,线路长度、负荷电流都会影响潜供电流与恢复电压,HSGS单端闭合时不利于熄弧,较高的二次电弧电阻有助于快速熄弧。200 km及以下的特高压平行双回线路使用低电阻、双端快速闭合的HSGS可以有效熄灭二次电弧,使单相重合闸成功。  相似文献   

10.
为研究潜供电弧的燃弧时间及其运动特性特性,建立了特高压输电线路潜供电弧低压模拟试验平台。该平台由潜供电弧低压模拟试验回路、基于电荷耦合单元图像传感的高速光学成像系统、基于电容分压的潜供电弧电压测量系统、基于Hall效应的潜供电弧电流测量系统等组成。对未补偿、欠补偿、过补偿3种工况下的潜供电弧进行了试验,得到了潜供电弧典型运动图像及其同步电压、电流波形。试验结果表明:潜供电弧阴、阳极弧根运动特性不同,但都具有极性效应;且该运动特性会对电弧电流、电压特性造成影响。阳极弧根跳跃或弧柱短接时,电弧两端电压将出现骤降;新的阴极弧根激发时,潜供电弧电流增大。潜供电弧发展后期,存在2种不同的熄弧情况:一种为稳定燃烧,电流过零自然灭弧;另一种为短暂熄灭,经过数ms的延时,弧道击穿,电弧重燃,此后快速灭弧。加速潜供电弧通道等离子体的去游离过程有助于电弧的快速熄灭。  相似文献   

11.
林莘  谢寅志  徐建源 《高电压技术》2012,38(9):2150-2156
为限制潜供电流和恢复电压值从而使特高压输电线路发生瞬时性故障后单相自动重合闸能可靠重合,利用电磁暂态仿真程序ATP/EMTP,计算了在加装快速接地开关(high speed grounding switch,HSGS)和中性点小电抗2种方式下浙北—上海特高压交流同塔双回输电线路产生的潜供电流和恢复电压,并对计算结果进行了分析。结果表明这2种方法都能有效抑制潜供电流和恢复电压,但加装快速接地开关(HSGS)多用于输电线路不完全换位且短输电线路;中性点小电抗适用于全线均匀换位运行方式的输电线路;中性点小电抗的最佳取值为500mH。  相似文献   

12.
半波长交流输电线路的潜供电弧特性与单相自动重合闸   总被引:1,自引:0,他引:1  
阐述了半波长交流输电线路的运行特性,给出了其沿线电压、电流的分布规律。通过建立简化的输电线路电磁耦合模型,给出了理想半波长交流输电线路的潜供电流及弧道恢复电压的表达式。研究了线路传输功率、人工调谐网络、线路长度等对潜供电流与恢复电压的影响,结果表明半波长交流输电线路潜供电流与恢复电压分布规律与常规线路截然不同。提出了基...  相似文献   

13.
330kV及以上电压等级的EHV输电线路发生单相接地故障时,故障相断路器跳开后,故障点处的弧光不能自灭,数十安的自由电弧电流让断路器重合闸无法顺利完成,严重影响了供电的可靠性和安全性。EHV输电线路的输送距离较远,潜供电弧的两个重要参数:潜供电流和恢复电压,在故障相线路上都具有一定的分布特性,所以应用分布参数计算模型对自由电弧进行探讨。先从较为简便的线路单元的等值电路出发,推导出潜供电流和恢复电压的数学模型。然后,探讨并建立了带有并联电抗器和串联补偿站的超高压输电线路的潜供电流和恢复电压的数学模型。最后分析所建立的分布式数学模型的物理意义。  相似文献   

14.
超高压同杆双回输电线路中熄灭潜供电弧的研究   总被引:20,自引:8,他引:12  
为了使单相自动重合闸在超高压同杆双回线路中可靠重合,必须限制潜供电流和恢复电压的大小。针对超高压长线路中普遍装设有并联电抗器,可采用在并联电抗器中性点加小电抗熄灭潜供电弧的特点,分析计算了中性点小电抗的不同接线方法和取值对潜供电流和恢复电压的影响。计算表明,通过合理地选择中性点小电抗可将潜供电流和恢复电压限制到要求值以下,并且文中所述的第2种接线方法对于同杆双回线限制潜供电弧具有较好的补偿效果。  相似文献   

15.
超高压串联补偿输电线路的潜供电流和恢复电压   总被引:17,自引:3,他引:14  
同无串补超高压输电线路相比,串补线路的潜供电流和恢复电压含有低频分量,文章通过对一500kV输电系统进行简化等值电路的分析,以及用EMTP进行仿真计算,阐述了超高压输电线路恢复电压的拍频特性及串补线路潜供电流和恢复电压低频特性的产生机理,分析了弧道电阻对串补线路潜供民流的自熄和单相重合闸成功率的影响。  相似文献   

16.
应用EMTPE仿真软件,计算了福州-温州特高压同塔双回线路潜供电流和恢复电压,分析了潜供电流和恢复电压的主要影响因素.通过对福州-温州特高压线路潜供电流和恢复电压的综合分析,提出了高抗中性点小电抗取值建议.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号