首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 177 毫秒
1.
《电网技术》2021,45(2):526-533
特高压直流输电工程及近区大规模风电场的陆续投运使系统交直流故障扰动后的暂态过电压问题愈发凸显,严重威胁交直流设备安全,已成为严重制约特高压直流输电能力及风电场并网功率的关键因素,其中风电机组在系统交直流故障扰动后低电压穿越过程中的有功/无功功率动态特性是引起系统暂态电压进一步升高的重要因素。鉴于此,结合我国风电机组并网技术规范,首先阐明了风电场在电网故障穿越过程中的控制切换逻辑,并详细分析了风电机组在低电压穿越期间及恢复过程中的暂态有功及无功输出特性。其次,探讨了风电场低穿过程恶化系统暂态过电压的作用机制,在此基础上,对比分析了不同低穿控制方式对风电机组功率特性及对系统暂态电压的影响,并指出了敏感影响因素。最后,提出了风电机组低穿控制性能优化建议,可用于指导实际并网风电机组低穿控制策略优化,以有效抑制系统暂态过电压水平。  相似文献   

2.
大规模风电场并网将会影响电力系统暂态稳定性。基于直流潮流模型、扩展等面积定则并利用Matlab/Simulink仿真分析了不同的电压跌落、故障持续时间以及低电压穿越(LVRT)控制策略对系统暂态稳定性的影响。仿真结果表明:电压跌落越深、故障时间越长,系统暂态稳定性越差,风电场的低电压穿越控制策略能够改善故障期间系统暂态稳定性,但是其能力有限。  相似文献   

3.
针对永磁同步风电机组远距离大规模并网的问题,研究了采用半桥型模块化多电平换流器(MMC)和直流断路器(DCCB)进行架空直流输电的并网方案。但架空线路故障率高,在发生直流侧故障、网侧交流故障时,基于MMC的高压直流(MMC-HVDC)系统保护装置会动作,导致MMC闭锁,不能不间断运行。为解决MMC-HVDC穿越交、直流故障的问题,基于DCCB和耗散电阻,提出了一种MMC-HVDC系统的交、直流故障穿越方案。在故障发生后,通过设计DCCB风电场侧MMC降压协调控制策略,以及高压直流侧耗散电阻和风电场侧制动电阻间的控制策略和配合方案,实现了MMC-HVDC系统的交、直流故障穿越。最后,通过PSCAD/EMTDC下的多组仿真,验证了上述交直流故障穿越方案的有效性和正确性。仿真结果表明,所设计的穿越方案能够使MMC-HVDC系统在不闭锁MMC的前提下,安全穿越故障期;在故障清除后,系统快速恢复到正常运行状态。  相似文献   

4.
海上风电场MMC HVDC并网系统暂态行为分析   总被引:3,自引:1,他引:2  
对于海上风电场模块化多电平换流器型高压直流输电(MMC-HVDC)并网系统,提出风电场侧模块化多电平换流器通过双维度单环直接控制风电场集电系统交流电压的方法,有效控制集电系统交流电压并保持稳定。基于PSCAD/EMTDC建立整个海上风电场直流并网系统模型,进行相应仿真研究,针对风速变化、风电场集电系统故障、电网故障以及MMC-HVDC直流单极接地故障等几种情况进行暂态分析,并与交流并网系统暂态结果进行比较。研究结果表明,采用所述控制方法的并网MMC-HVDC系统在发生相应故障时能够保持稳定运行,验证了海上风电场MMCHVDC并网系统及相应控制方法的正确性和有效性。  相似文献   

5.
模块化多电平直流输电联网风电场时的低电压穿越技术   总被引:2,自引:0,他引:2  
柔性直流输电并网方式对于大容量远距离海上风电场是一种较好的并网方案.针对模块化多电平直流输电(modular multilevel converter-HVDC,MMC-HVDC)应用于大规模风电场联网问题,分析研究了相应的MMC-HVDC稳态控制策略,仿真验证了其可行性.为保证当联网系统与交流系统的并网点发生不对称故障时风电场可以不脱网持续运行,设计了MMC-HVDC不对称故障期间的控制器,以将风电场与故障隔离并尽可能将功率传送至交流系统中,提高了风电场的低电压穿越能力,并在PSCAD/EMTDC中搭建的仿真模型上验证了此方法的可行性及有效性.  相似文献   

6.
在大容量直流和高占比新能源集中接入的电网背景下,暂态过电压问题极大地制约了直流输电能力和风电并网容量,亟须进一步深入研究考虑风机动态特性的大扰动暂态过电压机理及影响因素。文中从理论推导和仿真分析2个方面开展研究,首先推导了交直流故障后换流站和风机侧暂态电压幅值的理论计算公式;然后分析了交直流故障引发暂态过电压的机理及主要影响因素;最后结合仿真分析了风机低电压穿越期间不同有功、无功特性对暂态过电压的影响,通过实际系统算例进行了仿真验证。研究结果表明,风机低电压穿越特性将使得风电场成为换流站之外另一个导致暂态过电压的"无功源",低电压穿越期间风机有功出力越小及无功出力越大将导致暂态过电压越严重。  相似文献   

7.
针对分布式风电场接入配电网后,网侧故障时风机的故障穿越特性对暂态电压稳定性产生较大影响的问题,利用DigSILENT软件改进了双馈式风力发电机(DFIG)模型,使其与实测风机具备相同的低电压穿越特性,并研究了分布式风电场接入配电网不同位置时风机的低电压穿越特性对暂态电压稳定性的影响。研究结果表明,风电场接入网架中心位置的暂态电压稳定性较好,但在故障和电网恢复过程中,配电网电压仍然发生两次电压跌落,而在风电场接入配电网公共连接点配置适当容量的SVG会提升电网暂态电压稳定性。  相似文献   

8.
离岸较远的海上风电场经模块化多电平换流器型高压直流(modular multilevel converter high voltage direct current,MMC-HVDC)联网较交流联网有技术优势,但直流系统会因电网扰动而闭锁,影响风电功率外送。为提高直流系统抗扰动能力,构建了一种提高风电场经直流联网系统低电压故障穿越能力的柔性泄能电阻方案,具有对风电运行工况和故障强度的广泛适应性。研究了风电运行工况及故障强度对直流系统闭锁的影响,提出了系统的故障穿越安全域。分析了泄能电阻阻值设计原则,给出了柔性泄能电阻阻值的边界。设计了适用于不同风电运行工况的柔性泄能电阻投切控制策略。仿真结果表明:柔性泄能电阻控制策略可以在不同风电运行工况和故障强度条件下有效防范直流系统的闭锁,改善海上风电场经MMC-HVDC联网系统运行的安全性。  相似文献   

9.
为解决基于MMC-HVDC的海上风电场在不对称电网故障下普遍存在的低电压穿越问题,提出了一种基于PI电压外环和内模电流内环的新型控制策略及辅助保护方案。首先分析了不对称电网故障下MMC换流器运行特性,在αβ两相静止坐标系下建立了三相不对称电网下MMC换流器的数学模型。然后以抑制负序电流为控制目标在αβ两相静止坐标系下基于内模控制器设计了系统控制策略,同时针对两相故障时由于MMC限流所导致的母线电压抬升问题,提出了基于直流泄放回路的系统辅助保护方案。最后在Matlab/Simulink仿真平台上对单相接地和两相接地短路两种不平衡故障工况下的控制系统性能进行仿真分析。仿真结果表明,所提的控制策略和辅助保护方案可以保证基于MMC-HVDC的海上风电场在电网不对称故障下实现低电压穿越运行,有效地提高了海上风电场的低电压穿越能力。  相似文献   

10.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

11.
为增强风电场并网点电压稳定性,提出了变速恒频双馈风电场与动态无功补偿装置STATCOM间的无功电压协调控制策略。电网故障导致风电并网点不同深度的电压跌落时,根据双馈风机Crowbar保护投切状态,对DFIG风电机组转子侧及网侧变流器与STATCOM进行无功功率分配,协调控制促进风电场LVRT期间风电并网点电压的快速恢复。最后,在DIg SILENT/Power Factory仿真软件中建立了风电场和STATCOM控制模型,通过仿真验证该控制策略的有效性。  相似文献   

12.
风电系统接入基于模块化多电平换流器(MMC)的高压直流(HVDC)输电系统是极具前景的输电方案,同时也面临较为突出的系统稳定性问题。小信号阻抗分析法是研究互联系统稳定的有效办法。然而,MMC的内动态特性使得精确建立其阻抗模型具有较大难度。文中采用多谐波线性化方法建立了采用双闭环定交流电压控制的MMC送端换流站小信号阻抗模型,可实现电流环对MMC阻抗影响的准确分析。针对直驱风机通过MMC-HVDC系统并网的系统,利用阻抗分析法分别分析了MMC电流环不同控制带宽下互联系统振荡的问题,为电流环参数优化设计提供了依据。最后,基于MATLAB/Simulink的仿真结果证明了阻抗模型和稳定性分析理论的正确性。  相似文献   

13.
甘肃风电基地装机容量大,集中,风电能源就地消化比例低,电网相对薄弱,因此,风力发电接入电网的问题突出,风电场在系统出现低电压时能正常工作并提供无功功率支撑系统电压,对于提高风电场的可用率及提高电力系统的安全稳定性有重要意义。针对甘肃风电系统存在的低电压穿越(LVRT)问题,提出了一种基于动态电压调节器(DVR)的风电机组单机LVRT方案,并通过仿真验证了该方案的可行性。该方案可用于解决单台风电机及风电机群的LVRT问题。  相似文献   

14.
基于VSC-HVDC并网风电场的低电压穿越技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
VSC-HVDC系统应用于大规模风电集中并网、远距离输送时,要解决电网故障时风电场的低电压穿越(LVRT)问题。为此,提出VSC-HVDC系统与风电场的协调控制策略。低电压穿越期间,通过HVDC两端变流站对电网提供无功支持并采用基于频率控制的快速功率降低算法控制风电场馈入功率,维持直流线路功率平衡。同时,提出风电机组分层控制,使之与HVDC功率控制相协调,保持风电机组的电压稳定。VSC-HVDC系统与风电场间无需通信连接,无需增加设备投资,具有较好的经济性。最后,算例仿真结果验证了该控制策略的快速性和有效性。  相似文献   

15.
For the stability of power systems including large‐scale generation of wind power, wind farms are expected to fulfill the requirement with the capability to remain connected to the systems during a momentary voltage dip occurring in power networks. This has prompted many utilities to adopt the low‐voltage ride‐through (LVRT) of wind turbine generators (WTGs) as one of the requirements in interconnection of large wind farms. This paper presents a new method of pitch angle control for fixed‐speed wind turbine (FSWT) to achieve LVRT capability improvement. The FSWT is equipped with directly grid‐coupled squirrel‐cage induction generator and the LVRT behavior of such wind turbine is closely related to the overspeeding of wind turbine rotor during voltage dip. If the turbine rotor speed can be reduced quickly during voltage dip so as not to rise over the maximum speed, then the sudden disconnection of WTG can be avoided. The proposed pitch control system can modify the pitch angle in the short response time by the coordination of protective relay. Then the pitch angle is adjusted by a feedback proportional integral controller based on the measurement of induction generator terminal voltage. Simulation study shows that the application of the proposed pitch control system can improve the LVRT performance of a wind farm equipped with FSWTs. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

16.
向无源网络供电的模块化多电平换流器型高压直流输电(MMC-HVDC)系统的送端交流系统发生故障时,功率传输的不平衡会使MMC-HVDC直流电压严重跌落直至系统崩溃。首先分析了送端交流系统发生故障时MMC电容放电的机理,然后设计了一种向无源网络供电的MMC-HVDC送端交流故障穿越策略,该策略的核心思想是在送端故障期间降低无源网络吸收的功率从而使MMC-HVDC直流侧功率尽量平衡。最后在PSCAD/EMTDC仿真平台上搭建了向由感应电动机和静态特性负荷组成的无源网络供电的MMC-HVDC系统,验证了送端系统故障时MMC电容放电机理。仿真结果表明,在所设计的故障穿越策略的作用下,MMC-HVDC在送端交流系统故障期间能够遏制直流电压跌落而保持稳定运行,提高了系统的故障穿越能力。  相似文献   

17.
针对因风速扰动、负荷变化等引起的缓慢且幅度较大的电压波动,提出了一种基于直驱式风电场的功率协调控制策略。通过调节桨距角降低有功出力,从而增加风电场无功功率的调节能力,维持风电场出口电压水平,从而预防或避免由于电压偏差较大引起风电机组进入低电压穿越模式,造成其对电网更大的冲击。仿真结果表明,上述方法能够合理协调控制风电场的有功和无功出力,有效为风电场出口电压提供无功支持,从而维持接入点电压的稳定性。  相似文献   

18.
架空线MMC-HVDC是大规模风电友好型并网和可靠送出的有效手段。针对架空线故障率高的问题,采用对称双极接线方式和具备故障阻断能力的混合型MMC是其主要解决方案之一。基于此方案提出了风电经双极混合型MMC-HVDC并网的直流故障穿越协调控制策略。通过混合型MMC零直流电压控制实现了故障电流的有效阻断,并维持了故障极MMC对交流电压的支撑能力。基于对称双极接线方案运行方式灵活的特点,根据故障极功率能否被非故障极完全吸收,分别提出了自吸收和非自吸收工况下非故障极MMC的控制策略及其参数调整原则。并基于风电场频率响应能力设计了无需通信的精确减载控制策略,以实现非故障极MMC满载运行,在维持系统安全稳定运行的同时降低对受端交流系统的影响。最后,基于Matlab/Simulink搭建并网系统模型,验证了所提直流故障穿越协调控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号