首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
风电机组低电压穿越功能及其应用   总被引:6,自引:0,他引:6  
风电机组低电压穿越(LVRT)能力的深度对机组造价影响很大,根据实际系统对风电机组进行合理的LVRT能力设计很有必要.对变速风电机组LVRT原理进行了理论分析,对多种实现方案进行了比较.在电力系统仿真分析软件DIgSILENT/Power Factory中建立双馈变速风电机组及LVRT功能模型.以地区电网为例,详细分析系统故障对风电机组机端电压的影响,依据不同的风电场接入方案计算风电机组LVRT能力的电压限值,对风电机组进行合理的LVRT能力设计.结果表明,风电机组LVRT能力的深度主要由系统接线和风电场接入方案决定.设计风电机组LVRT能力时,机组运行曲线的电压限值应根据具体接入方案进行分析计算.  相似文献   

2.
双馈型风力发电系统低电压穿越技术综述   总被引:5,自引:0,他引:5  
杨耕  郑重 《电力电子技术》2011,45(8):32-36,59
随着双馈感应发电机( DFIG)风电场在并网风电容量中比重的增加,为了确保电力系统的可靠运行,提高DFIG风电场的低电压穿越(LV RT)能力显得尤为重要.首先介绍了风电场并网准则对LVRT的要求,接着分析了电网电压骤降故障下DFIG的瞬态特性及其LVRT技术的难点;在系统总结和评价国内外现有DFIG系统的LVRT技术...  相似文献   

3.
采用SVC改善双馈感应型风电场并网时暂态电压稳定性。通过仿真软件DIg SILENT/Power Factory建立静止无功补偿器(SVC)的控制模型。以实现风电场的低电压穿越(low voltage ride through,LVRT)的前提下应用SVC改善风电场的电压稳定性。仿真结果表明,采用SVC的并网风电场具有良好的动态性能,并且提高了风电机组在系统出现故障时的LVRT能力,确保了风电机组的连续运行和电网的安全稳定。  相似文献   

4.
VRB储能系统对风电场LVRT特性影响分析   总被引:3,自引:0,他引:3  
为满足电网规定的并网风电场必须具有低电压穿越能力(LVRT)要求,提出一种在风电场并网点加入直接功率控制的钒液流电池(VRB)储能系统的拓扑结构来提高风电场LVRT.根据目前风电机组发展趋势风电场采用基于全功率双脉宽调制AC/DC/AC控制策略的逆变器的永磁直驱风电机组(PMSG),VRB储能系统逆变器采用DC/AC双向功率流动的控制策略.所提出的控制策略通过协调控制风电机组机侧整流器、网侧逆变器和VRB变换器,实现平抑风电场出力和电压跌落时PCC点电压稳定控制及向电网提供一定的无功补偿.仿真结果表明,风速波动和系统电压跌落时,提出的方案可以有效平抑风电场出力波动,提高风电场LVRT能力,减小对系统安全稳定运行的负面影响.  相似文献   

5.
轻型高压直流输电系统(VSC-HVDC)是风电技术的重要发展方向。随着风电比重快速增加,电网对风电机组及其并网系统地低电压穿越(LVRT)能力提出了更高的要求。本文首先分析了电压跌落对VSC-HVDC系统和风电机组的影响,继而简要地总结了风电机组LVRT技术,然后对各种适合于VSC-HVDC风电系统的LVRT方案进行了分析评价,并重点讨论了该风电系统的LVRT协调控制技术。  相似文献   

6.
风电场实现低电压穿越技术改造方案   总被引:4,自引:2,他引:2  
李明东 《中国电力》2011,44(6):48-51
我国风电设备制造业刚刚起步,风电机组普遍不具备低电压穿越(LVRT)能力,对风电机组进行改造所需的成本昂贵,因此考虑对风电场进行技术改造。分析并综述了国内外实现风电场LVRT技术改造的主要方案,现阶段并联动态无功补偿装置和串联动态电压调节器比较可行,未来储能装置由于其具备有功无功调节的多种功能,将会广泛地应用于风电场提高低电压穿越能力。  相似文献   

7.
基于VSC-HVDC并网风电场的低电压穿越技术研究   总被引:1,自引:0,他引:1       下载免费PDF全文
VSC-HVDC系统应用于大规模风电集中并网、远距离输送时,要解决电网故障时风电场的低电压穿越(LVRT)问题。为此,提出VSC-HVDC系统与风电场的协调控制策略。低电压穿越期间,通过HVDC两端变流站对电网提供无功支持并采用基于频率控制的快速功率降低算法控制风电场馈入功率,维持直流线路功率平衡。同时,提出风电机组分层控制,使之与HVDC功率控制相协调,保持风电机组的电压稳定。VSC-HVDC系统与风电场间无需通信连接,无需增加设备投资,具有较好的经济性。最后,算例仿真结果验证了该控制策略的快速性和有效性。  相似文献   

8.
双馈变速风电机组低电压穿越控制方案的研究   总被引:2,自引:0,他引:2  
根据紧急电网规程要求,电网故障时风电机组应能保持与电网连接并向系统不间断供电,故人们开始关注风电机组在暂态过程中的表现,并相应提出了低电压穿越(LVRT)要求.讨论了外部电压骤降下DFIG风电系统的低压穿越控制策略和保护方案,在电力系统仿真分析软件DIgSILENT/Power Factory中建立了双馈风电机组的详细模型及其LVRT控制模型,并对一个风电场连接无穷大系统进行了仿真,比较了不同故障严重程度时双馈机组的低电压控制方案.仿真结果表明,转子快速短接保护装置(Crow-bar)在电网暂态过程中可以有效防止过电流对转子变频器的危害,其切除时刻对故障电网恢复和变频器保护有较大影响.通过合理地控制能使风电场穿越较为严重的电网故障,并且无需吸收大量无功功率,有利于电网的恢复.  相似文献   

9.
改善基于双馈感应发电机的并网风电场暂态电压稳定性研究   总被引:14,自引:8,他引:14  
提出了改善基于双馈感应发电机的并网风电场暂态电压稳定性的措施以实现风电场的低电压穿越(low voltage ride through, LVRT)功能。目前,大部分基于双馈感应发电机的变速风电机组不具有故障情况下的暂态电压支持能力,当电网侧发生严重短路故障时,风电场的暂态电压稳定能力会影响到电网安全稳定。该文在DIgSILENT/PowerFactory中建立了具有暂态电压支持能力的变速风电机组转子侧变频器控制模型及用于故障后稳定控制的桨距角控制模型,通过包含风电场的电力系统仿真计算验证了模型的有效性及其对风电机组和电网暂态电压稳定性的贡献。仿真结果表明,当电网侧发生三相短路故障时,风电机组转子侧变频器暂态电压控制能够控制风电机组发出无功功率支持电网电压;桨距角控制能有效降低变速风电机组机械转矩,避免出现风电机组超速及电压失稳。得出结论:采用变频器暂态电压控制及桨距角控制能够改善基于双馈感应发电机的并网风电场的暂态电压稳定性,确保风电机组低电压穿越(LVRT)功能的实现及电网安全稳定。  相似文献   

10.
随着风电机组装机容量的快速增长,电网对风电场的并网要求不断提高。为了实现不同电网故障(对称、不对称)下的低电压穿越(LVRT)及对电网的无功支撑,文中在全面分析目前国内外风电LVRT技术研究现状及不足的基础上,针对双馈风电机组提出了一种集成软、硬件方案的LVRT综合控制策略。该策略中具有优化投切判据的撬棒(Crowbar)保护电路可根据电网故障类型自动判断投入、切出时间,具有更强的灵活性及适用性;增加无功输出补偿目标的网侧变流器不对称控制的软件方案,使双馈风电机组在故障期间具有无功支撑能力。通过电压跌落发生器模拟电网三相短路和两相接地短路,在一台30kW的双馈风电机组试验平台上进行了实验研究,验证了所提出策略的正确性与有效性。  相似文献   

11.
近年来,西北尤其是甘肃风力发电装机容量不断增长,大规模风电并网对电网的影响日益受到重视。低电压穿越能力是风电机组并网特性的重要考核指标之一。2011年以来国网公司西北分部和甘肃省调在酒泉千万千瓦风电基地共同组织开展了风电机组低电压穿越能力抽检验证工作,共进行33座风电场44台风电机组现场试验。通过对测试过程中遇到的风电机组脱网故障进行分析总结,找到了影响风电机组低电压穿越能力的主要因素,并结合实例对各影响因素进行分析阐述。目前,风电机组的硬件维护水平、主控制策略调整、软件设置和控制版本升级仍是影响并网风电机组低电压穿越能力的主要因素。  相似文献   

12.
降压控制是实现风电场经基于模块化多电平换流器的高压直流(MMC-HVDC)输电并网系统低电压穿越(LVRT)的主要方法,但采用降压控制极易导致风电场暂态过流,不仅会加重风电机组的电气应力,还会危及直流系统的安全运行。为了改善风电场及MMC-HVDC系统的暂态特性和低电压穿越能力,文中对双馈感应发电机(DFIG)风电场MMC-HVDC系统的低电压穿越过程进行了解析,设计了与降压控制相协调的风电场辅助降载控制策略,分析了控制器参数变化对风电场降载速率及直流系统电压动态特性的影响,通过仿真验证了所设计方案的有效性。  相似文献   

13.
风电场根据并网导则在低电压穿越期间向系统注入无功电流可能引起风电系统失稳,导致风电场低电压穿越失败。针对该问题,建立了该运行工况下含有锁相环环节的风电系统状态空间模型,有效揭示了系统失稳的原因,提出了利用储能装置改善风电场注入电流特性进而维持系统稳定的措施。仿真结果表明:所提风电系统低电压运行工况下的状态方程能够有效地描述系统的小扰动稳定特性;储能装置通过合理注入有功电流改善了风电场注入电流特性,有效提高了风电场低电压情况下的系统稳定性。  相似文献   

14.
首先分析风电场低电压穿越(low voltage ride-through,LVRT)能力,然后介绍以双馈感应发电机(doubly-fed induction generator,DFIG)为主体的风电场模型以及静止同步补偿器(static synchronous compensator,STATCOM)的控制策略。最后将STATCOM和静止无功补偿器(static var compensator,SVC)分别应用到含风电场的无穷大系统中,在电力系统仿真软件PSCAD上搭建模型,并对系统故障状态进行仿真,在此基础上分析STATCOM和SVC的无功补偿特性,并对补偿效果进行比较。仿真结果表明无功补偿装置可以在系统故障后提供无功支撑,提高了风电场的低电压穿越能力,并且STATCOM无功补偿性能较SVC更优。  相似文献   

15.
大规模风电场接入电网会对电网稳定性产生巨大影响,风电场出力变化会引起电网电压波动,严重时会导致系统电压崩溃.静止同步补偿器(STATCOM)可提供感性和容性无功功率,对改善风电场电压稳定具有重要作用.采用链式STATCOM作为风电场的无功补偿装置,针对链式结构直流侧电容电压不平衡问题采用了改进的直流侧电压平衡控制方法.最后,通过仿真结果验证了所采用链式STATCOM直流侧电压平衡控制策略正确可行,同时验证了STATCOM对风电场低电压穿越(LVRT)能力的改善.  相似文献   

16.
For the stability of power systems including large‐scale generation of wind power, wind farms are expected to fulfill the requirement with the capability to remain connected to the systems during a momentary voltage dip occurring in power networks. This has prompted many utilities to adopt the low‐voltage ride‐through (LVRT) of wind turbine generators (WTGs) as one of the requirements in interconnection of large wind farms. This paper presents a new method of pitch angle control for fixed‐speed wind turbine (FSWT) to achieve LVRT capability improvement. The FSWT is equipped with directly grid‐coupled squirrel‐cage induction generator and the LVRT behavior of such wind turbine is closely related to the overspeeding of wind turbine rotor during voltage dip. If the turbine rotor speed can be reduced quickly during voltage dip so as not to rise over the maximum speed, then the sudden disconnection of WTG can be avoided. The proposed pitch control system can modify the pitch angle in the short response time by the coordination of protective relay. Then the pitch angle is adjusted by a feedback proportional integral controller based on the measurement of induction generator terminal voltage. Simulation study shows that the application of the proposed pitch control system can improve the LVRT performance of a wind farm equipped with FSWTs. © 2011 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

17.
针对因风速扰动、负荷变化等引起的缓慢且幅度较大的电压波动,提出了一种基于直驱式风电场的功率协调控制策略。通过调节桨距角降低有功出力,从而增加风电场无功功率的调节能力,维持风电场出口电压水平,从而预防或避免由于电压偏差较大引起风电机组进入低电压穿越模式,造成其对电网更大的冲击。仿真结果表明,上述方法能够合理协调控制风电场的有功和无功出力,有效为风电场出口电压提供无功支持,从而维持接入点电压的稳定性。  相似文献   

18.
当系统中风电装机容量比例较大时,系统故障导致电压跌落后,风电场切除会严重影响系统运行的稳定性,这就要求风电机组具有低电压穿越(Low Voltage Ride Through,LVRT)能力,保证系统发生故障后风电机组不间断并网运行。分析了双馈风电机组LVRT原理和基于转子撬棒保护(crow-bar protection)的LVRT控制策略,在电力系统仿真分析软件DIgSILENT/Power Factory中建立了双馈风电机组模型及其LVRT控制模型,以某地区风电系统为例进行仿真计算,分析转子撬棒投入与  相似文献   

19.
双馈式风力发电机低电压穿越技术分析   总被引:19,自引:4,他引:19       下载免费PDF全文
随着一些地区风电供应比例的急剧增加,大规模风电场对地区电网稳定性造成的影响愈发显著.风力发电机的低电压穿越(LVRT)技术越来越受关注.文中首先介绍了低电压穿越技术的概念、国外的相应标准,继而分析比较了有关此技术的双馈感应发电机建模问题、各种常见的实现低电压穿越的技术手段及改进控制策略.最后描述了具备此技术的风电场对电力系统的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号