首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has become desirable to develop energy control technologies for environmental issues such as global warming and exhaustion of fossil fuel. Power fluctuations in large power consumer facilities may cause instability of electric power systems and increase the cost of the electric power facilities and electricity charges. Developing electric power leveling systems (EPLS) to compensate power fluctuations is necessary for future electric power systems. EPLS with an SMES has been proposed as one countermeasure for use in electric power quality improvement. SMES is superior to other energy storage devices in response and storage efficiency. The authors have proposed EPLS based on fuzzy control with SMES. For this practical implementation, optimizing the control gain and SMES capacity is an important issue. This paper proposes a new method for optimization of the EPLS. The proposed algorithm is a novel particle swarm optimization based on taper‐off reflectance (TRPSO). The proposed TRPSO optimizes the design variables of the EPLS efficiently and effectively. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 186(3): 10–18, 2014; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.22472  相似文献   

2.
A new optimization method of the electric power leveling system using an SMES is proposed. The SMES is parallelly connected with rolling mills in steel works. The leveling control is based on fuzzy reasoning. The SMES capacity and the scaling factors of the fuzzy controller will be optimized so that the power leveling control can be achieved and then the total cost of the added SMES cost and reduced contract electricity rate becomes lower. The optimization is carried out using a genetic algorithm and a cost reduction of 7.76 billion yen can be achieved. Power leveling simulation confirms that the proposed optimization method is very effective for designing the power leveling system. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 150(3): 62–69, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20049  相似文献   

3.
针对风能的随机性和波动性,风力发电系统易出现功率波动的问题,采用超导磁储能(SMES)和蓄电池(BESS)混合储能的方式来平抑功率波动,提出了一种改进型混合遗传算法的变参数荷电状态(SOC)分区控制优化策略。基于自适应学习的思想对算法进行了改进,使得算法的收敛速度和精确度得以提高。将储能系统荷电状态剩余量和荷电状态分区限值作为改进后混合遗传算法的目标函数和边界条件。所得目标结果作为滤波器滤波时间常数修正值对其进行修正,从而实现功率二次分配。在Matlab/Simulink中搭建仿真模型验证了该控制策略的有效性。所提控制策略可以对任意时刻SMES和BESS出力进行最优配合,同时能减小电池充放电深度和提高对风电功率波动的平抑效果,且能有效提高混合储能系统的使用寿命。  相似文献   

4.
This paper presents the design of a coordinated superconducting magnetic energy storage (SMES) and blade pitch controller (BPC) to stabilize the frequency in a smart‐grid power system. To compensate for such power variations, a SMES that is able to supply and absorb active power quickly can be applied to control the frequency fluctuation. The structure of the controller is that of a first‐order lead–lag compensator. The robustness of the controller is guaranteed by applying an inverse additive perturbation to represent possible unstructured uncertainties in the power system such as variation of system parameters, generating and loading conditions, etc. Genetic algorithm (GA) is applied to solve and achieve the control parameters. Simulation studies have been done to show the control effect and robustness of the proposed SMES and blade pitch in comparison with SMES & Pitch against various disturbances. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

5.
Recently, doubly fed induction generators (DFIG) and synchronous generators have been applied mostly to wind power generation, and variable speed control and power factor control have been implemented for high efficiency of wind energy capture and for high quality of power system voltage. In variable speed control, the wind speed or generator speed is used for maximum power point tracking. However, the properties of wind generation power fluctuations due to wind speed variation have not yet been investigated for those forms of control. The authors discuss power smoothing by these forms of control for DFIG interconnected to a 6.6‐kV distribution line. The performance is verified by means of the power PSCAD/EMTDC system simulation software for actual wind speed data and is investigated by using an approximate equation for wind generation power fluctuations as a result of wind speed variation. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 177(2): 10–18, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.20958  相似文献   

6.
Photovoltaic (PV) systems are attracting attention as one of the promising countermeasures against global warming and the environmental issues. However, the generation output from PV systems is generally unstable and unpredictable. Therefore, large penetration of PV systems may cause some serious impacts on power system operation, such as load frequency control, voltage regulation, etc. Estimation of the influences of PV system installation is becoming important, but it requires simultaneous multipoint solar radiation measurements. The Japan Meteorological Business Support Center has provided 1‐minute meteorological data observed in Japan, but its solar radiation data includes quantization errors. This paper proposes a regeneration method for solar radiation data including quantization errors. It also analyzes the spatial smoothing effect of global solar radiation fluctuations. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 180(3): 55–63, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21274  相似文献   

7.
This paper proposes a constant DC voltage control‐based strategy for an active power quality compensator (APQC) used in electrified railways. The proposed strategy consists of only an I‐PD‐based constant DC capacitor voltage control with an added moving‐average type low‐pass filter (LPF). The added LPF improves the response of the constant DC capacitor voltage control for the APQC. Thus we offer the simplest control method for the APQC used in electrified railways with improved response. The basic principle of the proposed control strategy is discussed in detail, and then confirmed by digital computer simulation using the PSIM software. A prototype experimental model is constructed and tested. Experimental results demonstrate that balanced source currents with unity power factor are obtained on the primary side of the Scott transformer in the traction substation systems, improving the response by one‐fourth as compared to that of the previously proposed control method. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

8.
In this paper, a heuristic‐based design of robust superconducting magnetic energy storage (SMES) controller is proposed taking system uncertainties into consideration. The SMES model with active and reactive power controllers is used. In addition, the effect of SMES coil current is also included in the model. The power system and the SMES unit with the designed controller are formulated as an optimization problem. The proposed objective function considers both the damping performance index and the robust stability index. In particular, the robust SMES controller is designed to enhance the system damping performance and robustness against system uncertainties such as various load and system parameter changes. The robust stability margin is guaranteed in terms of the multiplicative stability margin (MSM). In the proposed method, the robust SMES active and reactive power controllers are designed systematically by using hybrid tabu search and evolutionary programming, so that the desired damping performance and the best obtainable MSM are acquired. Finally, the designed SMES controller is examined under different situations to evaluate and confirm the effectiveness and robustness via eigenvalue analysis and nonlinear simulations. © 2006 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

9.
One of the main parameters determining railway efficiency is capacity. The main volumes of transportation of goods and passengers on the railways of Russia and most other countries are carried out along electrified sections. The traction power–supply system (TPSS) of electrified railways that provides the energy for transportation is at the same time an element limiting train handling through the sections. Thus, there is an urgent task to evaluate the railroad capacity in terms of energy supply, followed by the development of measures improving bottlenecks in the power–supply system. The paper presents the results of a study on improving a capacity calculation model of the electrified railways. An analysis of the “accuracy of calculation–railroad capacity” dependence and the electrical connection between traction substations is carried out. A traction power–supply system model of greater accuracy is developed through a procedure of model-result verification. Diagrams explaining the presence of electrical connection are presented. Electrical connection of both dc and ac adjacent traction substations is provided by means of activated sectional switchers of the overhead system and section switchboxes of the corresponding intersubstation zone. The developed traction power–supply model makes it possible to improve the accuracy of calculating the capacity of electrified railways.  相似文献   

10.
This paper proposes a new method of damping harmonic resonance in the DC link of a large‐capacity rectifier‐inverter system, such as in rapid‐transit railways. A voltage‐source PWM converter is connected in series to the DC capacitor of the rectifier through a matching transformer, acting as a damping resistor to the DC capacitor current. No filters are needed to extract harmonic components from the DC capacitor current. This results in a quick response and highly stable damping. The relationship between the control gain of the PWM converter and the required rating is theoretically discussed. We show that the required rating is less than one‐thousandth of that previously proposed. In particular, regenerating the power consumed by the PWM converter is very important because of the large power in practical systems. Normally, an additional PWM inverter is connected to the DC bus of the PWM converter to regenerate the consumed power. The additional inverter regenerates the DC power to the AC source through a transformer. This method, however, makes the damping circuit complex, thus the proposed method for the DC‐link harmonic resonance is less practicable. In this paper, a simple and novel scheme that utilizes the DC‐link voltage of the rectifier as a DC source for the PWM converter is proposed. The excellent practicability of the proposed damping method with the novel regenerating scheme is confirmed using digital computer simulation. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 144(2): 53–62, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10172  相似文献   

11.
The fast variations of wind speed during extreme wind gusts result in fluctuations in both generated power and the voltage of power systems connected to wind energy conversion system (WECS). This paper presents a control strategy which has been tested out using two scenarios of wind gusts. The strategy is based on active and reactive powers controls of superconducting magnetic energy storage (SMES). The WECS includes squirrel cage induction generator (SCIG) with shunt connected capacitor bank to improve the power factor. The SMES system consists of step down transformer, power conditioning unit, DC–DC chopper, and large inductance superconducting coil. The WECS and SMES are connected at the point of common coupling (PCC). Fuzzy logic controller (FLC) is used with the DC–DC chopper to control the power transfer between the grid and SMES coil. The FLC is designed so that the SMES can absorb/deliver active power from/to the power system. Moreover, reactive power is controlled to regulate the voltage profile of PCC. Two inputs are applied to the FLC; the wind speed and SMES current to control the amount active and reactive power generated by SMES. The proposed strategy is simulated in MATLAB/Simulink®. The proposed control strategy of SMES is robust, as it successfully controlled the PCC voltage, active and reactive powers during normal wind speeds and for different scenarios of wind gusts. The PCC voltage was regulated at 1.0 pu for the two studied scenarios of wind gusts. The fluctuation ranges of real power delivered to the grid were decreased by 53.1% for Scenario #1 and 56.53% for Scenario #2. The average reactive power supplied by the grid to the wind farm were decreased by 27.45% for Scenario #1 and 31.13% for Scenario #2.  相似文献   

12.
考虑到风电功率秒级波动对电网频率稳定的影响,需要对风电机组输出功率进行平滑控制。现有依靠风电机组实现风电功率平滑控制的方法大都存在频繁变桨的问题。为此提出了协调变速与变桨的平滑功率控制方法。该方法通过分离桨距角的上调和下调动作,将传统的基于变桨调节的恒转速(转速上限)控制转变为转速区间控制,使风轮机能够在任意桨距角下变速运行,从而更大程度地利用风轮机动能来平滑风电功率波动。因此,该方法在保证平滑控制效果的同时,能有效降低变桨动作频率和幅度,并减小变桨伺服机构的疲劳和叶片载荷。最后,基于风电机组模拟器的实验验证了所提方法的有效性。  相似文献   

13.
2,3 This paper proposes a DC voltage equalizing circuit for a diode‐clamped linear amplifier (DCLA). The DCLA consists of series‐connected complementary MOSFETs and diode clamping circuits, with an experimental efficiency as high as 90% without switching operation. The DCLA requires a DC voltage equalizing circuit to divide the DC voltage into several levels. The proposed DC voltage equalizing circuit allows the use of a diode rectifier with a smoothing capacitor as a power supply for the DCLA. Zero‐sequence voltage control is proposed to improve the efficiency of the DCLA. As a result, a prototype 12‐series DCLA demonstrates an experimental efficiency as high as 94.7%. © 2012 Wiley Periodicals, Inc. Electr Eng Jpn, 179(2): 55–63, 2012; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21131  相似文献   

14.
The authors have proposed FRIENDS—Flexible, Reliable and Intelligent Electrical eNergy Delivery System—as a future electric power distribution system. The most important idea of FRIENDS is to install new facilities called Quality Control Centers (QCCs) between the distribution substation and customers. By controlling QCCs appropriately, various purposes of FRIENDS can be achieved. It is indispensable to design the concrete interior structure of QCC in order to realize FRIENDS. This paper proposes the interior structure and control methods of QCC from the viewpoint of power conditioning functions by energy storage system in QCC. In this paper, it is assumed that SMES is used as the energy storage system in QCC. The proposed interior structure is based on the concept of UPS (Uninterruptable Power Supply). In this paper, SMES is installed in the DC side of UPS. Further, this paper proposes control methods of SMES and PWM converters. The proposed control methods are used to satisfy various purposes, such as load fluctuation compensation, load leveling, and cooperation with dispersed‐type generator. Finally, the validity of these control methods is confirmed through transient analysis PSCAD/EMTDC. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 143(3): 20–28, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10056  相似文献   

15.
This paper describes a control scheme of fault current limiter by series voltage injection. The current limiter proposed in this study is based on the use of a SMES‐based series‐connected voltage sag compensator, which has been previously studied by the authors, for controlling fault current caused by short circuit on the load side. An algorithm for fast discriminating between power system voltage sag and load‐side short circuit is proposed for the equipment to correctly function either for voltage sag compensation or for fault current limiting purpose. Furthermore, a new control strategy based on output voltage phase control of the series compensator is proposed for current limiting with good waveform characteristics and low active power absorption. Experimental results demonstrated the validity of the proposed strategy. © 2006 Wiley Periodicals, Inc. Electr Eng Jpn, 155(2): 64–72, 2006; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20128  相似文献   

16.
Renewable forms of energy such as solar energy have attracted attention as alternative sources of fossil fuel. The output power of photovoltaic generation systems changes steeply. Changes in output power have an effect on the electric power quality of the power system. For that reason, a system which can smooth fluctuations of output power is required. In this paper, the moving average, modified moving average, single exponential smoothing, and double exponential smoothing methods are applied to electric power smoothing control schemes for distributed generation systems with photovoltaic generation. The reduction rate of power fluctuations and the maximum stored energy of electric double layer capacitors are adopted as system evaluation measures. To confirm the effectiveness of the power smoothing control methods, a distributed generation power system with photovoltaic generation systems is simulated with the power electronics circuit simulation software PSIM. The methods are then compared by evaluating the reduction in the capacity of electric double layer capacitors without loss in the power smoothing effect.  相似文献   

17.
为促进风电在电网中的消纳吸收,提出了考虑电动汽车集群储能能力和风电接入的平抑控制策略。首先对单体电动汽车入网后的储能特性进行精细化建模,充分考虑储能容量对不同荷电状态(SOC)的电动汽车有功响应能力的约束,在此基础上构建了电动汽车集群储能能力评估模型;进而针对多个电动汽车集群的协同控制,提出了考虑集群储能能力差异性的联络线功率波动平抑控制策略。该策略根据SOC自适应算法,在考虑各电动汽车响应能力约束的基础上,根据自身SOC水平确定各电动汽车的目标功率值,从而充分利用电动汽车与电网交换功率的连续调节能力;同时,该策略提出2种不同的交换功率控制方法,并探究不同方法在减少放电过程方面的差异性。最后,算例中利用电动汽车集群储能能力平抑联络线的功率波动,仿真结果验证了所提出的电动汽车集群储能能力评估模型和平抑控制策略的有效性。  相似文献   

18.
Recently, the worldwide deregulation of the electric power industry is progressing. Further, it is expected that a many distributed generation facilities and energy storage systems will be installed at the end point of the power systems. Therefore, the future power system must be able to cope with these various qualities of power in the deregulated situation. The authors have proposed the FRIENDS (Flexible, Reliable, and Intelligent ENergy Delivery System) concept as a new distribution system that copes with a new framework of the electric power business in the near future. The most typical aspect of FRIENDS is the introduction of new equipment; Quality Control Centers (QCC) between distribution substations and customers. In this paper, the authors propose a concrete interior structure and investigate some control methods for realizing unbundling power quality supply and power conditioning using the proposed UPQC‐type QCC. The effectiveness of the proposed method is confirmed through the instantaneous value analysis using PSCAD/EMTDC. © 2003 Wiley Periodicals, Inc. Electr Eng Jpn, 146(3): 26–38, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10243  相似文献   

19.
In Japan, local power systems (77 kV) are served from the 275‐ or 154‐kV substations. For enhancement of power supply reliability, the transmission lines are connected to several substations, and the operational configuration is radial. The local power system's configuration is determined by connecting and disconnecting transmission lines so as to keep the radial structure and satisfy the operation constraints. When a local power system has a number of transmission lines, many configuration candidates occur. Recently, an IEEJ committee made a practical scale local system model (IEEJ Local System Model). Since the IEEJ Local System Model has 76 transmission lines, the total number of configuration candidates is 276 (approximately 7.5 × 1022). In this paper, the authors try to strictly obtain the loss‐minimum configuration under constraints such as substation capacity, line capacity, and radial structure in the IEEJ Local System Model. In order to obtain the optimal configuration, a new computation algorithm is proposed. In the proposed algorithm, the configuration determination problem is replaced as two combinatorial optimization problems based on the operational constraints [(1) substation capacity, (2) line capacity, and (3) radial structure]. One combinatorial optimization problem (subproblem 1) is to pick up all partial configurations so as to minimize total line loss under the substation capacity constraint. By using the enumeration method, subproblem 1 is solved. Subproblem 2 is solved by using the reduced ordered binary decision diagram (ROBDD). Since the proposed method is based on enumeration and Boolean function, the optimality of obtained solution is guaranteed. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 146(4): 34–42, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10226  相似文献   

20.
Due to the increment of penetration level of wind power generation, output power fluctuation is one of the most important issue's that can destabilize the power system operation. This article mainly deals with the smoothing of the output power fluctuations of a wind energy conversion system based permanent magnet synchronous generator and fault ride-through enhancement during a grid fault. The concerned wind energy conversion system based permanent magnet synchronous generator adopts an AC-DC-AC converter system. The proposed control method limits the wind energy conversion system output power by adjusting the pitch angle of the wind turbine blades when wind speed is above the rated wind speed. In the grid-side converter, a fuzzy logic controller is used to determine the torque reference for which the kinetic energy stored by the inertia of wind turbine can smooth the output power fluctuations of the permanent magnet synchronous generator. Also, the DC-link voltage, controlled by the grid-side inverter, is adjusted in accordance with the output power fluctuations of the permanent magnet synchronous generator using a voltage smoothing index. Moreover, in this aticle, the proposed method ensures that the wind turbine stays operational during grid faults and provides fast restoration once the fault is cleared. To show the effectiveness of the proposed method, simulations under different conditions have been performed by using MATLAB/Simulink® (The Math Works, Natick, MA, USA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号