首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
电网电压稳定与无功功率补偿的研究   总被引:1,自引:0,他引:1  
从电压稳定的基本概念和现有的研究成果出发,分析了电压稳定的机理和无功功率补偿的方法,明确现今电网无功问题的三个特点,说明系统的无功功率平衡与电压稳定和电压崩溃是密不可分的,并就无功补偿的不同方式,对防止电压崩溃的发生提出了相应的对策。分析了静止无功补偿器(SVC)与静止无功发生器(SVG)的工作特性与基本原理,对SVC与SVG进行了比较与述评,得出了应用SVG可以更好地控制无功功率的分布,提高电网的电压稳定水平,有效地避免电压崩溃的结论。  相似文献   

2.
郑中 《电气开关》2009,47(4):82-84
静止无功补偿器(SVC)和静止无功发生器(SVG)是改善电能质量的重要无功补偿装置,已被用来提高功率因数、抑制电压波动与闪变、使电压的幅值和波形符合要求等。分析了SVC和SVG的工作特性和基本原理,并基于simulink建立了SVC和SVG的仿真模型,通过仿真结果指出SVG比SVC具有响应速度快、损耗小、谐波量小及在系统发生短路故障电压跌落时,相同容量的SVG可以比SVC提供更多的无功以维持系统电压稳定等优点。  相似文献   

3.
针对新能源接入后的无功电压控制问题,基于模型预测控制(model predictive control,MPC)理论,提出一种多阶段自动电压控制(automatic voltage control,AVC)优化策略。在日前优化安排离散无功补偿设备(电容器、有载变压器分接头)投切计划的基础上,日内采用基于MPC的优化控制思路,利用连续无功补偿装置(static var generator,SVG)对电压进行控制。通过建立灵敏度矩阵计算得到未来多个时刻的母线电压预测值; 以最小化未来一段时间预测的电压控制偏差为目标函数,建立日内滚动优化控制模型,求解得到SVG的出力序列,并通过反馈校正,完成日内无功电压MPC。在改进的IEEE 30算例的基础上对所提方法进行验证,结果表明,该方法能够有效应对电网电压快速频繁波动的问题,及时追踪电网电压波动,使SVG出力更加平滑、电压控制效果更好。  相似文献   

4.
根据佛山电网的现场需求,针对FC调节电压能力差及区域电网电压不稳定问题,设计并实现了静态无功发生器(SVG)的控制策略。在对FC电压补偿和SVG电压补偿进行比较分析的基础上,对设计用于SVG区域电网的无功、电压综合控制策略进行试验分析,结果证明了主控策略的正确性。  相似文献   

5.
随着更多风电场接入电网和风电场规模不断扩大,风电特性对电网的负面影响愈来愈显著,主要问题包括并网功率因数不合格、电压偏差、电压波动、闪变以及电网安全稳定,而动态无功补偿装置在维持风电场并网点电压平衡,维持电力系统暂态稳定,改善电能质量等方面起着重要的作用。结合具体工程实践介绍动态无功补偿装置SVG的基本原理、控制方法、优缺点,同时分析SVG在风电场升压站设计中的注意事项及应用SVG之后电网电能质量的改善情况。  相似文献   

6.
大规模电动汽车充电负荷将加重局部配电网节点电压偏离标称电压程度,且在时间和地点上具有随机性,传统无功补偿方式虽能解决上述问题但经济性较差。因此,提出了一种基于电动汽车无功补偿的电压调控策略,该策略通过有效调节充电机的运行功率因数,对节点进行无功补偿的同时改变充电有功功率,从而在保证节点电压安全稳定的同时又不降低配电网经济性。通过分析符合国内一二线城市特征的工作区域的出行行为特性和充电机变功率因数运行特性,计算了充电机运行功率因数的可调控范围,进而提出了以接入某节点的所有电动汽车充电机运行功率因数为优化变量,以减小节点电压与额定值差距、减小电压波动、电动汽车单位时间段内充入电量尽可能多为优化目标的节点电压调控模型,并采用免疫优化算法对该模型进行求解。最后以实际局部配电网为例,通过仿真验证了该策略的有效性。  相似文献   

7.
针对甘肃电网瓜州地区风电场原有固定电容器组无功补偿性能缺陷和安全隐患,提出利用SVG装置动态无功调节的优势对原有无功补偿装置进行改造方案.介绍了瓜州地区电网概况、特点和远期规划,以及采用SVG的意义和应用,分析了SVG装置响应时间和动态跟踪时间,讨论了利用SVG装置连续平滑调节无功补偿量配合原有固定电容器组的改造方案、特点、实际效果,改造后,满足系统对无功电压的调控要求,也为今后电网的无功补偿智能化改造提供了经验.  相似文献   

8.
《电力勘测设计》2017,(Z2):118-122
在电力系统不断发展的今天,无功补偿技术成为了解决电网电压波动、功率因数低、存在大量谐波等问题的关键技术。静止无功发生器(Static Var Genertor,SVG)以其补偿范围宽、相应时间快、补偿功能多样化等技术优势成为了当前变电站无功补偿装置的最佳选择。本文介绍了SVG的特点,基于SVG与变电站其他补偿装置的组建原则,对比分析了SVG+固定电容器组(FC)综合并联补偿装置在变电站的不同控制方式,并得出了最优方案。最后,通过SVG在我国变电站的应用实例,论证了本文对SVG控制方案选择的正确性及SVG应用在变电站的优势。  相似文献   

9.
SVC与SVG的比较   总被引:3,自引:0,他引:3  
作为改善电能质量的无功补偿装置已成为用来有效地抑制电压波动与闪变、消除三相不平衡,使电压的幅值和波形符合要求、提高功率因数等。文章重点分析了静止无功补偿器(SVC)与静止无功发生器(SVG)的工作特性与基本原理,在介绍TSC、SSR、TCT与TCR型等四种SVC的分类与应用的基础上,重点分析了TCR+FC型SVC的机理与基本变量关系;对SVC与SVG进行了比较与述评,并得出结论:SVG是今后无功补偿与谐波抑制综合技术的发展方向。  相似文献   

10.
本文论述了动态无功补偿技术在光伏电站电网中的应用,分析了SVG的基本工作原理、组成及其控制策略,并对其控制策略进行了理论分析,并在霍城图开光伏电站进行了现场测试。测试结果表明,该SVG可有效改善光伏电站接入点电网的电能质量、抑制电压波动、并提高功率因数,具有较高的学术研究和工程应用价值。  相似文献   

11.
应用于风电场的动态无功补偿装置主要有TCR型静止无功补偿装置(SVC)与静止无功发生器(SVG)两大类。基于山西省电力公司关于风电场动态无功补偿装置的测试项目,从工作原理、性能指标以及实用特性三方面对SVC与SVG进行综合分析,对比得出结论:二者均能满足当前国标对动态无功补偿装置提出的要求,且各具利弊,SVG的发展前景更为乐观。  相似文献   

12.
电动汽车充电机谐波抑制工作机理的研究   总被引:1,自引:0,他引:1  
电动汽车充电机作为非线性负荷,在充电过程中会产生大量不规则谐波,影响电网电能质量。根据其产生的谐波特点,研究利用有源电力滤波器(APF)抑制相应谐波的工作机理,采用空间矢量与滞环相结合的控制策略,建立了充电机谐波抑制系统的Matlab仿真模型,分别对单台充电机和多台充电机运行时的谐波抑制进行了仿真研究。仿真结果表明,充电机系统在单台或多台、稳态或暂态情况下,APF都能有效抑制谐波。  相似文献   

13.
徐剑  曹扬  张伟 《供用电》2010,27(6):18-20
智能变电站的优化无功管理、提高母线电压质量、有效进行谐波治理,是智能电网建设的必要内容。介绍了由静止无功发生器(SVG)和并联电容器组(FC)组成的动态无功补偿与谐波治理装置(SVC++成套装置)在上海蒙自智能变电站10 kV侧的配置,以及有源电力滤波器(APF)在交流380 V站用电系统的配置方案,分析了其应用效果以及与IEC 61860标准的通信接入方式。  相似文献   

14.
矿用静止无功发生器的设计   总被引:2,自引:2,他引:0       下载免费PDF全文
针对煤矿现阶段SVC无功补偿装置响应速度较慢、无功调节范围窄、欠压时调节能力低、对电网电压波动调节能力不够理想、占用体积大、产生谐波电流大等问题,提出了以逆变器为核心的有源SVG静止无功发生器。SVG采用自换相变流电路,通过直流侧电容与逆变电路逆变出幅值与相位均可控的三相电压后,通过电抗器连接电网,调节三相逆变电压可控制流入逆变器的电流幅值与相位,即吸收容性或感性无功。仿真与实验结果均表明:通过SVG静止无功发生器可以快速调节无功,维持功率因数较高水平,有效解决煤矿生产设备使用对电网造成的供电质量下降问题。  相似文献   

15.
城市220 k V长电缆的大量应用造成电网无功电源容量过剩,导致系统电压过高,分析了高压电缆对电网产生的无功电压问题及系统无功电压调节方法,结合具体案例提出在附近变电站加装感性无功补偿装置、减少无功电源出力等措施来补偿电缆增加的充电功率,实际应用表明,该措施可对电网无功电压问题起到很好的治理效果,保障了电网安全稳定运行。  相似文献   

16.
电动汽车通过充电桩的变流器接口接入配电网,变流器的无功功率调节能力有助于改善配电网电压分布和运行效率.文中提出一种计及充电站无功补偿的配电网日前-实时协调优化模型.首先,建立了以配电网运营成本最小为优化目标的日前优化模型,确定充电站日前有功功率、电容器组投切和有载调压挡位.再根据日前优化结果和电动汽车实时数据,建立配电网与充电站分层协调的电动汽车有功和无功功率实时优化模型,其中为确保每台电动汽车离开时能够达到目标荷电状态,考虑电动汽车前一时刻荷电状态的影响动态调整其当前荷电状态边界.最后,通过IEEE 33节点系统测试验证了所提模型的有效性.  相似文献   

17.
Excessive carbon emissions from the current transportation sector has encouraged the growth of electric vehicles. Despite the environmental and economical benefits electric vehicles charging will introduce negative impacts on the existing network operation. This paper examines the voltage impact due to electric vehicle fast charging in low voltage distribution network during the peak load condition. Simulation results show that fast charging of only six electric vehicles have driven the network to go beyond the safe operational voltage level. Therefore, a bi-directional DC fast charging station with novel control topology is proposed to solve the voltage drop problem. The switching of power converter modules of DC fast charging station are controlled to fast charge the electric vehicles with new constant current/reduced constant current approach. The control topology maintains the DC-link voltage at 800 V and provides reactive power compensation to regulate the network bus voltage at the steady-state voltage or rated voltage (one per unit). The reactive power compensation is realized by simple direct-voltage control, which is capable of supplying sufficient reactive power to grid in situations where the electric vehicle is charging or electric vehicle is not receiving charges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号