首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new acoustic wave sensor to detect and quantify fluoride, one of the most hydrophilic anions, is proposed. Meso-octamethylcalix[4]pyrrole (OMCP) and seven of its derivatives were evaluated as piezoelectric quartz crystal coatings. Some of these sensors experienced appreciable coating leaching under a water flow, while others did show a very small sensitivity to fluoride. As the OMCP-naphthoquinone sensor was very sensitive to fluoride and did not lose a significant amount (α = 0.05) of coating during eight weeks, it was selected among all the others. A piezoelectric crystal coated with an amount of OMCP-naphthoquinone that produced a frequency decrease of 22 kHz showed a linear calibration range that extended up to 80 mg L−1, within which sensitivity to fluoride was 0.45 Hz L mg−1, and was able to detect fluoride at the concentration of 3.66 mg L−1. This sensor was used to determine fluoride in commercial fluoride tablets, and the result found was not statistically different (α = 0.05) from the value provided by the manufacturer.  相似文献   

2.
A hybrid method is proposed for prediction of low-subsonic, turbulent flow noise. In this method, the noise sources in the near wall turbulences or in the wake are computed by the incompressible large eddy simulation (LES), while the generation and propagation of the acoustic waves are solved by the linearized perturbed compressible equations (LPCE), with acoustic sources represented by a material derivative of the hydrodynamic pressure, DP/Dt. The accuracy of the present method is critically assessed for two experiments conducted at the Ecole Centrale de Lyon and the University Erlangen, where aeroacoustic measurements were taken for (i) the flat plate self-noise at zero angle of attack and (ii) the forward-facing step noise , respectively. The noise sources are identified and analyzed further to determine their spectral-dependent, spanwise coherence functions, γij of the wall pressure fluctuations, in order to quantify the sizes of the noise sources. The far-field sound pressure level (SPL) spectra predicted by the present method are found in excellent agreement with the experimental measurements.  相似文献   

3.
This paper presents a design of a high-speed data recovery circuit for non return zero (NRZ) data transmission using delay-locked loop (DLL) with SAW filter. The jitter generation of the circuit is decreased by adjusting the loop gain in DLL whereas surface acoustic wave (SAW) filter with low centered frequency (fc) improves the jitter transfer function of DLL. It is seen that the circuit using SAW filter of fc = 1.24416 GHz and Q = 1000 provides the cut off frequency of about 600 kHz which is ∼10 times lower than that of conventional DLL circuit.  相似文献   

4.
A hybrid (FV + FE) acoustic damping method, which is investigated and optimized in terms of wave harmonics behavior of the method, is utilized at Ma = 0.01 for heated circular cylinders. Discretization of nonlinear convective terms is a modified approximate Riemann solver. Modification is realized through multiplication of dissipation term with an acoustic damping matrix. This is necessary to avoid drawbacks of standard algorithm and to improve accuracy of results, if low speed applications are concerned. Later, harmonics of velocity and temperature fields behind a heated circular cylinder are investigated numerically for moderate Reynolds numbers between 70 and 110. A parametric study of the first harmonics is carried out precisely by increasing temperature ratios, T = Twall/T from 1.03 to 1.8. Results agree well for high temperature ratios, T = 1.5, 1.8 and Re ? 100, with the key issues stated in the experimental work of Ezersky et al. [Ezersky AB, Lecordier JC, Paranthoën P, Soustov PL, Structure of vortices in a Karman street behind a heated cylinder. Phys Rev E 2000;61:2107]. Moreover, it is found that decrease in frequency of oscillations can be explained as heated cylinders have larger vortex formation region as a result of heat flux from walls in comparison to non-heated cylinders. At lower temperature ratios, T = 1.03, 1.1, temperature can be taken as passive scalar field.  相似文献   

5.
The predictability of the vegetation cycle is analyzed as a function of the spatial scale over West Africa during the period 1982-2004. The NDVI-AVHRR satellite data time series are spatially aggregated over windows covering a range of sizes from 8 × 8 km2 to 1024 × 1024 km2. The times series are then embedded in a low-dimensional pseudo-phase space using a system of time delayed coordinates. The correlation dimension (Dc) and entropy of the underlying vegetation dynamics, as well as the noise level (σ) are extracted from a nonlinear analysis of the time series. The horizon of predictability (HP) of the vegetation cycle defined as the time interval required for an n% RMS error on the vegetation state to double (i.e. reach 2n% RMS) is estimated from the entropy production. Compared to full resolution, the intermediate scales of aggregation (in the range of 64 × 64 km2 to 256 × 256 km2) provide times series with a slightly improved signal to noise ratio, longer horizon of predictability (about 2 to 5 decades) and preserve the most salient spatial patterns of the vegetation cycle. Insights on the best aggregation scale and on the expected vegetation cycle predictability over West Africa are provided by a set of maps of the correlation dimension (Dc), the horizon of predictability (HP) and the level of noise (σ).  相似文献   

6.
The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a knee frequency of around 400 Hz. The 1/f-like excess noise can be described by the phenomenological Hooge equation with a Hooge parameter of γH = 0.016. The detectivity is shown to depend on the total length, width and thickness of the bridge branches. The detectivity is improved by the square root of the length increase. Moreover, the detectivity is shown to depend on the amplitude of the applied magnetic field, revealing a magnetic origin to part of the 1/f noise.  相似文献   

7.
Airborne and satellite brightness temperature (TB) measurements were combined with intensive field observations of sub-Arctic tundra snow cover to develop the framework for a new tundra-specific passive microwave snow water equivalent (SWE) retrieval algorithm. The dense snowpack and high sub-grid lake fraction across the tundra mean that conventional brightness temperature difference approaches (such as the commonly used 37 GHz-19 GHz) are not appropriate across the sub-Arctic. Airborne radiometer measurements (with footprint dimensions of approximately 70 × 120 m) acquired across sub-Arctic Canada during three field campaigns during the 2008 winter season were utilized to illustrate a slope reversal in the 37 GHz TB versus SWE relationship. Scattering by the tundra snowpack drives a negative relationship until a threshold SWE value is reached near 130 mm at which point emission from the snowpack creates a positive but noisier relationship between 37 GHz TB and SWE.The change from snowpack scattering to emission was also evident in the temporal evolution of 37 GHz TB observed from satellite measurements. AMSR-E brightness temperatures (2002/03-2006/07) consistently exhibited decreases through the winter before reaching a minimum in February or March, followed by an increase for weeks or months before melt. The cumulative absolute change (Σ|Δ37V|) in vertically polarized 37 GHz TB was computed at both monthly and pentad intervals from a January 1 start date and compared to ground measured SWE from intensive and regional snow survey campaigns, and climate station observations. A greater (lower) cumulative change in |Δ37V| was significantly related to greater (lower) ground measured SWE (r2 = 0.77 with monthly averages; r2 = 0.67 with pentad averages). Σ|Δ37V| was only weakly correlated with lake fraction: monthly r2 values calculated for January through April 2003-2007 were largely less than 0.2. These results indicate that this is a computationally straightforward and viable algorithmic framework for producing tundra-specific SWE datasets from the complete satellite passive microwave record (1979 to present).  相似文献   

8.
Reefs of the tube-building polychaete Lanice conchilega are known to represent hotspots of biodiversity within inter- and subtidal soft sediments of the North Sea. However, because of their patchy distribution, point sampling does not appropriately map their subtidal spatial distribution. This study evaluated the feasibility to detect L. conchilega reefs by very-high resolution side-scan sonar imagery. A subtidal very-high resolution (410 kHz) side-scan survey, combined with grab sampling, revealed high densities of L. conchilega (up to 1979 ind. m? 2) to coincide with a higher reflectivity, patchy and grainy acoustic facies. From the side-scan sonar imagery, individual reefs were estimated to reach a maximum size of 15 m2. To ground truth the acoustic facies, the distribution of intertidal L. conchilega reefs was mapped at low tide and side-scan sonar imagery was recorded during the following high tide. Intertidal L. conchilega reefs had a patch size of 0.8 m2 up to 11.6 m2, elevated 7.5 to 11.5 cm above the surrounding seafloor and covered approximately 10% of the selected area. The very-high (445 kHz) resolution side-scan sonar imagery revealed a similar acoustic facies as in the subtidal. Lower-resolution (132 kHz) side-scan sonar imagery was less efficient to detect physically less developed L. conchilega reefs. We conclude that (1) there are no major technical restrictions to map L. conchilega reefs using side-scan sonar, (2) the developmental stage of L. conchilega reefs impacts the detectability of the reefs, and (3) very-high resolution side-scan sonar imagery is considered a necessity when mapping small-scale structures, such as L. conchilega reefs.  相似文献   

9.
Time series of satellite sensor-derived data can be used in the light use efficiency (LUE) model for gross primary productivity (GPP). The LUE model and a closely related linear regression model were studied at an ombrotrophic peatland in southern Sweden. Eddy covariance and chamber GPP, incoming and reflected photosynthetic photon flux density (PPFD), field-measured spectral reflectance, and data from the Moderate Resolution Imaging Spectroradiometer (MODIS) were used in this study. The chamber and spectral reflectance measurements were made on four experimental treatments: unfertilized control (Ctrl), nitrogen fertilized (N), phosphorus fertilized (P), and nitrogen plus phosphorus fertilized (NP). For Ctrl, a strong linear relationship was found between GPP and the photosynthetically active radiation absorbed by vegetation (APAR) (R2 = 0.90). The slope coefficient (εs, where s stands for “slope”) for the linear relationship between seasonal time series of GPP and the product of the normalized difference vegetation index (NDVI) and PPFD was used as a proxy for the light use efficiency factor (ε). There were differences in εs depending on the treatments with a significant effect for N compared to Ctrl (ANOVA: p = 0.042, Tukey's: p ≤ 0.05). Also, εs was linearly related to the cover degree of vascular plants (R2 = 0.66). As a sensitivity test, the regression coefficients (εs and intercept) for each treatment were used to model time series of 16-day GPP from the product of MODIS NDVI and PPFD. Seasonal averages of GPP were calculated for 2005, 2006, and 2007, which resulted in up to 19% higher average GPP for the fertilization treatments compared to Ctrl. The main conclusion is that the LUE model and the regression model can be applied in peatlands but also that temporal and spatial changes in ε or the regression coefficients should be considered.  相似文献   

10.
Neurotoxic organophosphorus (OP) compounds are commonly used as chemical warfare agents and pesticides. Due to their high toxicity, rapid and sensitive field detection of these compounds has been an ongoing topic of interest. Biosensors made with organophosphate hydrolase enzyme (OPH) are generally designed to either amperometrically detect an electroactive leaving group produced following enzymatic cleavage, or to potenitometrically detect the pH change that occurs during cleavage. Since OPs are more likely to have phenolic leaving groups as compared to electroactive leaving groups, we have developed a new amperometric dual enzyme electrochemical assay that enables the detection of a broad class of OP compounds using the OPH enzyme combined with horseradish peroxidase (HRP). The assay has been applied to the detection of dichlofenthion, which does not have an electroactive leaving group and is not a commonly investigated OPH substrate. Using reverse phase HPLC, we have determined the Michaelis-Menten kinetic parameters of an engineered OPH enzyme to be KM = 0.11 ± 0.02 mM and kcat = 0.046 ± 0.003 s−1 with dichlofenthion as the substrate. Detection of the phenolic leaving group from the OPH enzyme reaction using the HRP electrode is carried out at −50 mV vs. Ag/AgCl where the noise and background are low and interferences are negligible. After optimization of the solution pH, the dual enzyme biosensor was found to have a limit of detection (LOD) of 24 μM (7.6 ppm), and a sensitivity of 0.095 ± 0.024 nA/μM for dichlorofenthion. By detecting the phenolic leaving groups from the OP targets using the HRP electrode, biosensors made using this new platform have the potential to detect a broad range of important OP compounds.  相似文献   

11.
The design of a Stratonovich noise feedback controller with support in an arbitrary open subset O0 of O is described. This exponentially stabilizes in probability, that is with probability one, the Oseen-Stokes systems in a domain ORd, d=2,3. This completes the stabilization results from the author’s work Barbu (2011) [3] which is concerned with design of an Ito noise stabilizing controller.  相似文献   

12.
Studies using satellite sensor-derived data as input to models for CO2 exchange show promising results for closed forest stands. There is a need for extending this approach to other land cover types, in order to carry out large-scale monitoring of CO2 exchange. In this study, three years of eddy covariance data from two peatlands in Sweden were averaged for 16-day composite periods and related to data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and modeled photosynthetic photon flux density (PPFD). Noise in the time series of MODIS 250 m vegetation indices was reduced by using double logistic curve fits. Smoothed normalized difference vegetation index (NDVI) showed saturation during summertime, and the enhanced vegetation index (EVI) generally gave better results in explaining gross primary productivity (GPP). The strong linear relationships found between GPP and the product of EVI and modeled PPFD (R2 = 0.85 and 0.76) were only slightly stronger than for the product of EVI and MODIS daytime 1 km land surface temperature (LST) (R2 = 0.84 and 0.71). One probable reason for these results is that several controls on GPP were related to both modeled PPFD and daytime LST. Since ecosystem respiration (ER) was largely explained by diurnal LST in exponential relationships (R2 = 0.89 and 0.83), net ecosystem exchange (NEE) was directly related to diurnal LST in combination with the product of EVI and modeled PPFD in multiple exponential regressions (R2 = 0.81 and 0.73). Even though the R2 values were somewhat weaker for NEE, compared to GPP and ER, the RMSE values were much lower than if NEE would have been estimated as the sum of GPP and ER. The overall conclusion of this study is that regression models driven by satellite sensor-derived data and modeled PPFD can be used to estimate CO2 fluxes in peatlands.  相似文献   

13.
There is little information about occupational noise exposure of fishermen working on small and medium-scale fishing vessels, mainly because of the difficulty of conducting noise exposure surveillance in such occupations. The objective of the current study was to evaluate the exposure of this group of workers to occupational noise using a combined measurement and questionnaire approach. Sound pressure levels were measured aboard 24 fishing vessels at all working or resting locations and during speeding and slow-down moods of the engine. The average existence times of the crew at such locations were collected using a questionnaire. The average daily noise exposure levels (LEP,d,8h) for engine mechanics in all vessel types (91.2–94.3 dBA) and the tiller operators in gill/trammel and purse seining vessels (84.7–88.4 dBA) exceeded the NIOSH recommended exposure limit of 85 dBA. Other crew members were found to be exposed, on average, to daily noise exposure levels slightly lower than the recommended one (81.6–83.5 dBA). However, direct personal dosimetry for five crew members revealed daily noise exposure levels 1.1–5.1 dBA higher than the calculated averages, which might be attributed, partly, to sources of uncertainty. The results of this study suggest that small and medium-scale vessels fishermen are at high risk of NIHL, calling for development and enforcement of suitable interventions for hearing protection of the workforce of this sector.  相似文献   

14.
为探究出一套完整、准确的气动噪声仿真方法,用FLUENT和Actran仿真Helmholtz共振腔旁接管道系统模型.针对流场仿真,采用六面体网格建模,分析选择合适的网格密度,明确网格及边界条件的影响,以获得准确的声源信息;运用Lighthill声类比方法对声场进行仿真,采用数值计算、传声损失仿真和气动噪声仿真计算等3种方法提取管道内部场点声压级频谱曲线,分析曲线峰值频率特征,包括共振频率分析和声模态分析等.采用CFD软件与声学仿真软件相结合的方法,可以有效进行流场和声场的仿真.  相似文献   

15.
A 3D numerical simulation, based on the Lattice Boltzmann method is carried out on the near-wake flow behind a generic square-back blunt body to analyze and establish a method to control the near-wake flow. The flow topology is described by the velocity and the pressure fields. The influence of the wake vortices on the aerodynamic drag is clarified and quantified. In order to reduce this drag, an active open-loop flow control is applied by continuous blowing devices distributed around the base periphery. The blowing effect on the behind body flow is a reduction of the wake section and of the total pressure loss in the wake and an increase of the static pressure on the base of the square body. This control leads to a significant drag reduction of ΔCx = −29% with a blowing velocity of 1.5V0. The efficiency is then studied, and we found that the most efficient control is obtained for a blowing velocity of 0.5V0 and a jet angle of 45°. In this case, a 20% drag reduction is obtained, and the energy needed to control the system is seven times lower than the energy saved by the control.  相似文献   

16.
This study investigates impacts of oxygen flow during the deposition of amorphous indium–gallium–zinc oxide (a-IGZO) channel layer with a radio frequency (r.f.) magnetron sputter on the electrical characteristics of the fabricated thin-film transistors (TFTs). Results indicate that as the film was deposited with a higher oxygen flow, the transfer curves are positively shifted while the field-effect mobility (μFE) is significantly decreased. To get more insight about the effects, channel resistance (RCH) and the parasitic source-to-drain resistance (RSD) of the fabricated devices are extracted using the total resistance method. The extracted a-IGZO channel resistance per unit length (rch) and RSD are found to increase while the extracted effective mobility (μE) is decreased with increasing oxygen flow during sputtering. These observations are postulated to be related the decrease in the In/(In + Ga + Zn) ratio and the increase in the Zn/(In + Ga + Zn) ratio of the a-IGZO films with increasing the oxygen flow rate which lead to higher resistivity and lower carrier concentration. The extracted RSD can be comparable with RCH for the devices prepared with high oxygen flow, resulting in the roll-off of μFE as the channel length is shorter than 20 μm.  相似文献   

17.
This paper presents a simple electrochemical impedance spectroscopy (EIS) aptasensor based on an anti-thrombin-aptamer as a molecular recognition element. Improvement in sensitivity was achieved by utilizing gold nanoparticles (AuNPs), which were self-assembled on the surface of a bare electrode by using 1,6-Hexanedithiol as a medium. To quantify the amount of thrombin, changes in the interfacial electron transfer resistance (Ret) of the aptasensor were monitored using the redox couple of an [Fe(CN)6]3−/4− probe. The plot of (RetiRet0)/Ret0 against the logarithm of thrombin concentration is linear with over the range from 0.1 nM to 30 nM with a detection limit of 0.013 nM. Meanwhile, the packing density of aptamers was determined by cyclic voltammetric (CV) studies of redox cations (e.g., [Ru(NH3)6]3+) which were electrostatically bound to the DNA phosphate backbones. The results indicate that the total amount of aptamer probes immobilized on the gold nanoparticle surface is sixfold higher than that on the bare electrode. The aptasensor also showed good selectivity for thrombin without being affected by the presence of other proteins.  相似文献   

18.
Magnetic fields are used extensively to direct liquid metal flows in material processing. Continuous casting of steel uses different configurations of magnetic fields to optimize turbulent flows in rectangular cross-sections to minimize defects in the solidified steel product. Realizing the importance of a magnetic field on turbulent flows in rectangular cross-sections, the present work is aimed at understanding the effect of a magnetic field on the turbulent metal flow at a nominal bulk Reynolds number of ∼5300 (based upon full duct height) (Reτ = 170, based upon half duct height) and Hartmann numbers (based upon half duct height) of 0, 6.0 and 8.25 in a 2:1 aspect ratio rectangular duct. Direct numerical simulations in a non-MHD 2:1 aspect ratio duct followed by simulations with transverse and span-wise magnetic fields have been performed with 224 × 120 × 512 cells (∼13.7 million cells). The fractional step method with second order space and time discretization schemes has been used to solve the coupled Navier-Stokes-MHD equations. Instantaneous and time-averaged natures of the flow have been examined through distribution of velocities, various turbulence parameters and budget terms. Spanwise (horizontal) magnetic field reorganizes and suppresses secondary flows more strongly. Turbulence suppression and velocity flattening effects are stronger with transverse (vertical) magnetic field.  相似文献   

19.
Surface chlorophyll a concentrations (Ca, mg m− 3) in the Southern Ocean estimated from SeaWiFS satellite data have been reported in the literature to be significantly lower than those measured from in situ water samples using fluorometric methods. However, we found that high-resolution (∼ 1 km2/pixel) daily SeaWiFS Ca (CaSWF) data (SeaDAS4.8, OC4v4 algorithm) was an accurate measure of in situ Ca during January-February of 1998-2002 if concurrent in situ data measured by HPLC (CaHPLC) instead of fluorometric (CaFluor) measurements were used as ground truth. Our analyses indicate that CaFluor is 2.48 ± 2.23 (n = 647) times greater than CaHPLC between 0.05 and 1.5 mg m− 3 and that the percentage overestimation of in situ Ca by fluorometric measurements increases with decreasing concentrations. The ratio of CaSWF/CaHPLC is 1.12 ± 0.91 (n = 96), whereas the ratio of CaSWF/CaFluor is 0.55 ± 0.63 (n = 307). Furthermore, there is no significant bias in CaSWF (12% and − 0.07 in linear and log-transformed Ca, respectively) when CaHPLC is used as ground truth instead of CaFluor. The high CaFluor/CaHPLC ratio may be attributed to the relatively low concentrations of chlorophyll b (Cb/Ca = 0.023 ± 0.034, n = 482) and relatively high concentrations of chlorophyll c (Cc/Ca = 0.25 ± 0.59, n = 482) in the phytoplankton pigment composition when compared to values from other regions. Because more than 90% of the waters in the study area, as well as in the entire Southern Ocean (south of 60° S), have CaSWF between 0.05 and 1.5 mg m− 3, we consider that the SeaWiFS performance of Ca retrieval is satisfactory and for this Ca range there is no need to further develop a “regional” bio-optical algorithm to account for the previous SeaWiFS “underestimation”.  相似文献   

20.
A novel indane based β-diketone with trifluorobutane in the contraposition, 5-acetylindane-4,4,4-trifluorobutane-1,3-dione (HAITFBD) and its europium(III) ternary complex, Eu(AITFBD)3phen, were designed and synthesized, where phen was 1,10-phenanthroline. The complex was characterized by IR, UV-visible, thermogravimetric analysis (TGA) and photoluminescence (PL) spectroscopy in details. The results show that the Eu(III) complex exhibits high thermal stability, wide and strong excitation bands from 300 nm to 425 nm when monitored at 611 nm, which matches well with the 380 nm-emitting InGaN chips. The complex exhibits intense red emission under excitation of near UV light due to the f-f transitions of the central Eu3+ ion. Based on the emission spectrum, the CIE chromaticity coordinates of the LED are calculated as x = 0.63 and y = 0.34, which is suitable to be used as an efficient red phosphor in fabrication of white LEDs. The fluorescence lifetime and the luminescence quantum yield were also measured. The lowest triplet state energy of the primary ligand AITFBD was measured to be 17,730 cm−1, higher than that of the lowest excitation state energy level of the central Eu3+ ion, 5D0, and this suggests that the photoluminescence of the complex is a ligand-sensitized luminescence process (antenna effect). Finally, a bright red light-emitting diode was fabricated by coating the Eu(AITFBD)3phen complex onto a 380 nm-emitting InGaN chip. All the results indicate that Eu(AITFBD)3phen can be applied as a red component for fabrication of near ultraviolet-based white light-emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号