首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.

针对方案属性值和权重都为随机变量的群决策问题,结合贝叶斯理论和随机模拟,提出一种集成专家主观概率分布集结和随机多属性决策方案选优的方法.该方法首先构建一个多元正态集结模型,将多个专家估计的属性值分布集结成单一分布,然后用随机模拟算法,生成不完全权重信息,并通过计算各方案获得特定排名的可信度因子,以及反映决策者风险偏好的整体排名可信度因子,得到各方案排序.实例分析验证了方法的有效性.

  相似文献   

2.
针对综合交通网络评价指标权重及属性值具有主观性和随机性的特点,提出了基于模拟运算的布局规划方案排序选优的群体随机决策方法.仿真生成满足集结的多个专家对指标重要性偏好排序统计分布的权重,同时考虑交通需求的不确定性对指标值的影响,结合客观熵权计算方案的综合评价值,由多次模拟得到的排序优势度确定方案的优劣差异.根据设计的仿真流程通过算例说明了方法应用的有效性,评价中考虑了主客观因素及随机性特征,可以为网络布局提供科学决策依据.  相似文献   

3.
一种具有区间数信息的多属性大群体决策方法   总被引:2,自引:0,他引:2  
针对属性值为区间数的多属性多方案大群体决策问题,提出一种区间数聚类算法.通过该聚类算法将方案的属性值聚类,得到方案的群体偏好矩阵,再利用诱导有序加权平均算子集结确定属性的权重,根据方案的综合评价值给出方案排序,进而提出大群体决策方法.该方法较好地避免聚类阈值选取的经验性,提高决策结果的可信度.实例分析验证了方法的有效性和实用性.  相似文献   

4.
庞继芳  宋鹏 《计算机科学》2018,45(1):47-54, 72
针对专家权重信息完全未知且属性值为区间直觉不确定语言数的模糊多属性群决策问题,提出一种基于混合权重信息及决策者风险态度的群决策分析方法。在定义区间直觉不确定语言数差异度的基础上,分别利用专家在方案评价值上的贴近度以及方案排序上的一致度来计算两类专家权重,并基于均衡度得到专家的客观综合权重。进而通过融合专家客观综合权重以及基于相似度的个体综合评价值权重,提出一种混合加权集结方法,从而得到方案的群体综合评价值,并通过定义带有风险态度因子的期望值与精确函数实现对方案的比较和排序。最后,通过实例分析证明所提方法的有效性和合理性。  相似文献   

5.
基于直觉模糊集和证据理论的群决策方法   总被引:1,自引:0,他引:1  
针对属性值和权重均为直觉模糊数的多属性决策问题,提出一种基于直觉模糊集和证据理论的群决策方法.首先,对专家给出的每个方案的属性值和属性权重进行证据合成,在此基础上合成每个方案的所有属性值;然后,基于直觉模糊集相似度确定专家的相对权重,修正方案证据,并合成所有专家证据,得到方案的信任区间,根据信任区间的大小对方案进行排序;最后,通过数值案例验证了所提出方法的有效性和合理性.  相似文献   

6.
分析多属性决策方法中决策矩阵规范化和属性权重计算等步骤可能对决策方法合理性造成的不良影响,为克服这些不良影响,提出一种新的多属性决策方法.该方法采用群决策模式进行赋权,在对专家意见进行一致性分析的基础上,集结各位专家给出的属性权重,通过定义备选方案在属性值为实数、区间数和语言值等不同类型属性上的相对优势关系构造判断矩阵,并以此建立方案效用值计算的线性目标规划模型,从而实现备选方案的评价和排序.实例研究表明了所提出方法的可行性和有效性.  相似文献   

7.
针对专家给出的属性值为Pythagorean模糊语言且专家权重与属性权重均未知的多属性决策问题进行了研究,提出一种基于云模型的多属性决策方法。首先,根据Pythagorean模糊语言决策信息的距离熵计算得到属性权重;其次,计算决策矩阵间的距离从而得到各决策专家权重;再次,构建Pythagorean模糊云模型决策矩阵并利用专家权重和属性权重进行信息集结;最后,基于TOPSIS方法求取正、负理想解,依据理想解计算各方案贴近度并据此对各备选方案进行排序选择。案例分析表明,该方法优化了复杂环境下的决策,避免了决策信息的丢失,能够较好解决决策信息的不确定性和决策过程的随机性,具有一定的可行性和有效性。  相似文献   

8.
对多属性决策问题和信息集结问题进行了研究,分析了已有Vague集方法,并通过例子说明其不足之处.提出了一种多属性决策的Vague集方法.定义了方案对目标的支持(反对、中立)度等概念,利用目标优属度矩阵对属性值及属性权重进行集结,从而得到方案的Vague估计值.定义正(负)理想Vague值,并用TOPSIS法对方案进行排序和选优.算例验证了该方法的有效性和可行性.  相似文献   

9.
张市芳 《计算机科学》2014,41(5):243-244,253
针对属性权重完全未知且属性值为直觉模糊数的多属性决策问题,提出了一种新的决策方法。首先引入了直觉模糊数的一些运算法则、得分函数和精确函数等概念。然后构建了一个二次规划模型,通过求解该模型获得属性的权重。接着利用直觉模糊加权平均(IFWA)算子对属性值进行集结,得到方案的综合属性值。最后利用得分函数和精确函数对方案进行排序并择优。给出的算例说明了该方法的实用性和可行性。  相似文献   

10.
针对直觉模糊多属性群决策问题,研究属性和专家权重的确定以及信息的集结方法.利用直觉模糊熵确定属性客观权重,并根据偏好信息确定合理的属性综合权重;在属性层面区分专家权重,将直觉模糊评价值作为Mass函数,构建证据冲突度模型确定专家权重,并利用犹豫度加以修正,避免综合支持度低而对方案排序影响大的专家权重过分削弱;采用证据理论集结决策信息,根据得分值进行方案排序.最后通过算例分析,验证了所提出方法的合理性和有效性.  相似文献   

11.
构建了概率论和随机现象计算机模拟仿真演示系统。该系统包括六个子系统:人机界面、内核、集合论,概率分布、随机现象和帮助子系统。该系统可以完成的模拟演示包括:集合运算、教材中常见的概率密度函数和累积概率分布函数、概率游戏、概率论题解以及蒙特卡洛模拟等。学习者应用该系统可以对抽象的概率论理论、运算以及相关随机现象进行形象直观地观察和研究,该系统在概率论的教学中起到了类似实验室的作用,弥补了概率论常规教学中难以进行实验观察的不足。  相似文献   

12.
This paper focuses on the method of the simulation of a stochastic system and the main method of our paper is the Monte Carlo computation simulation method. Taking the stochastic Logistic equation as an example, we present the simulation of the sample trajectory by Euler scheme and the invariant probability distribution of stochastic differential equations with the Monte Carlo method. We also compare the simulation result with the analytical result for the autonomous stochastic Logistic model. Moreover, the stochastic Logistic equation with Markovian switching which is described by a Markov chain taking values in a finite state space is considered.  相似文献   

13.
A new subset simulation approach is proposed for reliability estimation for dynamical systems subject to stochastic excitation. The basic idea of subset simulation is to factor a small failure probability into a product of larger failure probabilities conditional on intermediate failure events. The new method proposed in this work does not require Markov Chain Monte Carlo simulation, in contrast to the original method, to estimate the conditional probabilities; instead, only direct Monte Carlo simulation is needed. The method employs splitting of a trajectory that reaches an intermediate failure level into multiple trajectories subsequent to the corresponding first passage time. The new approach still enjoys most of the advantages of the original subset simulation, e.g. it is applicable to general causal dynamical systems and it is robust with respect to the dimension of the uncertain input variables. The statistical properties of the failure probability estimators are presented, where it is shown that they are unbiased and formulas are derived to assess the error of estimation, including the coefficient of variation. We also discuss the selection of intermediate failure events and the number of samples for each failure level. The resulting algorithm is simple and easy to implement. Two examples are presented to demonstrate the effectiveness of the new approach, and the results are compared with the original subset simulation and with direct Monte Carlo simulation.  相似文献   

14.
当马尔可夫系统规模较大时,需要采用蒙特卡罗方法计算其瞬态不可用度,如果系统的 不可用度很小,则需要采用高效率的蒙特卡罗方法.本文在马尔可夫系统寿命过程的积分方程的 基础上,给出了系统瞬态不可用度计算的蒙特卡罗方法的统一描述,由此设计了马尔可夫系统瞬 态不可用度计算的直接统计估计方法和加权统计估计方法.用直接仿真方法、拟仿真方法、基于 直接仿真的统计估计方法、基于拟方仿真的统计估计方法和加权统计估计方法计算了-可修 Con/3/30:F系统的瞬态不可用度.结果表明,由于同时采用了偏倚的抽样空间和逐次事件估计 量,加权统计估计方法的方差最小,当系统不可用度很小时,该方法效率最高.  相似文献   

15.
Hyuk-Chun Noh  Taehyo Park   《Computers & Structures》2006,84(31-32):2363-2372
In order to endow the expansion-based stochastic formulation with the capability of representing the characteristic behavior of stochastic systems, i.e., the non-linear dependence of the response variability on the coefficient of variation of the stochastic field, a Monte Carlo simulation-compatible stochastic field is suggested. Through a theoretical comparison of displacement vectors in the Monte Carlo method and an expansion-based scheme, it is found that the stochastic field adopted in the expansion-based scheme is not compatible with that appearing in the Monte Carlo simulation. The Monte Carlo simulation-compatible stochastic field is established by means of enforcing the compatibility between the stochastic fields in the expansion-based scheme and the Monte Carlo simulation. Employing the stochastic field suggested in this study, the response variability is reproduced with high precision even for uncertain fields with a moderately large coefficient of variation. Furthermore, the formulation proposed here can be used as an indirect Monte Carlo scheme by directly substituting the numerically simulated random fields into the covariance formula. This yields a pronounced reduction in the computation cost while resulting in virtually the same response variability as the Monte Carlo technique.  相似文献   

16.
针对SIRS(Susceptible-Infected-Removed-Susceptible)病毒传播模型,利用状态转移概率的方法,通过计算节点处于各个状态的概率来研究SIRS病毒传播过程。首先建立状态概率方程组,描述各个时刻各个节点处于易感染态、感染态、免疫态的概率,通过稳态分析理论推导网络的病毒传播临界值;然后利用蒙特卡罗方法,对均匀网络和非均匀网络的病毒传播临界值进行分析和仿真。结果表明,相对于传统的平均场方法,基于状态概率方程组模型求得的传播临界值更加接近真实蒙特卡罗值,并且与免疫丧失率无关。  相似文献   

17.
蒙特卡罗仿真机及其应用   总被引:1,自引:0,他引:1  
蒙特卡罗仿真机是通过对随机性问题采用Monte Carlo方法进行计算机仿真,从而得出待解问题的解。为了研究复杂的随机问题,文中提出了基于蒙特卡罗的随机模拟法的蒙特卡罗仿真机,并说明了它的基本原理。通过圆周率的计算,实践了蒙特卡罗仿真机的应用过程,从而显示出蒙特卡罗仿真法处理随机性问题的优越性和仿真普遍的适用性。  相似文献   

18.
It is often expensive to estimate the failure probability of highly reliable systems by Monte Carlo simulation. Subset Simulation breaks the original problem of estimating a small probability into the estimation of a sequence of large conditional probabilities, which is more efficient. The conditional probabilities are estimated by Markov Chain simulation. Uncertainty in the power spectral density of the excitation makes it necessary to re-evaluate the reliability for many power spectral densities that are consistent with the evidence about the system excitation. Subset Simulation is more efficient than Monte Carlo simulation, but still requires a new simulation for each admissible power spectral density. This paper presents an efficient method to re-evaluate the reliability of a dynamic system under stationary Gaussian stochastic excitation for different load spectra. We accomplish that by re-weighting the results of a single Subset Simulation. This method is applicable to both linear and nonlinear systems provided that all of the spectra contain the same amount of energy. The authors are currently working on an extension of the method to nonlinear systems, even when the sampling and true power spectral density functions contain different amounts of energy.  相似文献   

19.
This paper presents a sequential Kriging modeling approach (SKM) for time-variant reliability-based design optimization (tRBDO) involving stochastic processes. To handle the temporal uncertainty, time-variant limit state functions are transformed into time-independent domain by converting the stochastic processes and time parameter to random variables. Kriging surrogate models are then built and enhanced by a design-driven adaptive sampling scheme to accurately identify potential instantaneous failure events. By generating random realizations of stochastic processes, the time-variant probability of failure is evaluated by the surrogate models in Monte Carlo simulation (MCS). In tRBDO, the first-order score function is employed to estimate the sensitivity of time-variant reliability with respect to design variables. Three case studies are introduced to demonstrate the efficiency and accuracy of the proposed approach.  相似文献   

20.
Stochastic robustness of linear time-invariant control systems   总被引:1,自引:0,他引:1  
A simple numerical procedure for estimating the stochastic robustness of a linear time-invariant system is described. Monte Carlo evaluation of the system's eigenvalues allows the probability of instability and the related stochastic root locus to be estimated. This analysis approach treats not only Gaussian parameter uncertainties but also nonGaussian cases, including uncertain but bound variations. Confidence intervals for the scalar probability of instability address computational issues inherent in Monte Carlo simulation. Trivial extensions of the procedure admit consideration of alternate discriminants; thus, the probabilities that stipulated degrees of instability will be exceeded or that closed-loop roots will leave desirable regions can also be estimated. Results are particularly amenable to graphical presentation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号