首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
多属性决策的结果与权重向量的选取有密切的关系。分析了主观赋权和客观赋权的优劣,提出了一种新的组合赋权方法。该方法通过在专家评分法、层次分析法、信息熵法、变异系数法这四种主客观赋权方法间建立平衡系数的概念,使最终的组合赋权向量与原向量间欧氏距离最小。将这种组合赋权方式与 TOPSIS法结合应用于载重量DW=35000t原油船船型方案决策分析,评判结果表明,新的组合赋权 TOPSIS法简单易行,意义明确。同时能兼顾主客观赋权的优点,合理、客观地给出排序方案。这种综合方法也能推广应用于船舶决策的其他领域。  相似文献   

2.
提出一种基于差分进化算法的多目标进化算法, 该算法个体的选择是通过非支配排序和拥挤度距离进行综合考虑. 保证了算法收敛到Pareto最优解集的同时, 提高了最优解个体分布的多样性. 通过与非支配排序遗传算法Ⅱ(NSGA Ⅱ)算法进行仿真对比, 结果显示基于拥挤度排序的多目标差分进化算法在收敛性和Pareto最优解集分布的多样性上均优于NSGA Ⅱ算法. 最后将其引入到热连轧负荷分配优化计算中, 给出了目标函数的表达方式, 对多目标进化算法在热连轧负荷分配计算中的应用进行了研究.  相似文献   

3.
针对海上搜救资源调度决策困难、干扰多、实时性差、难以实现全局最优问题,本文以黄渤海海域为例,采用改进的非支配排序遗传(NSGA-Ⅱ)算法解决海上船舶搜救资源调度问题.首先,根据AIS以及北斗数据,建立了海上搜救资源的多目标优化模型;其次,改进的NSGA-Ⅱ算法采用基于正态分布交叉(NDX)算子,在扩大搜索范围的基础上,避免陷入局部最优,得到多目标问题完整的Pareto解集;采用综合评价法(TOPSIS)从Pareto解集中求得折衷解,即最终设计的搜救调度方案;最后,在考虑船舶数量约束以及时间约束的条件下,采用改进的NSGA-Ⅱ算法分别与NSGA-Ⅱ算法和贪婪算法进行对比,并采用黄渤海海域船舶采集数据进行仿真.结果表明该算法能够有效解决海上搜救资源调度优化问题.  相似文献   

4.
朱占磊  李征  赵瑞莲 《计算机应用》2017,37(10):2823-2827
在高维多目标优化问题中,Pareto支配关系存在非支配解随优化目标数增加呈指数级增长和种群选择压力下降等问题。针对这些问题,基于线性权重聚合函数和支配关系两种比较多目标解方法的思想,提出一种线性权重最优支配关系(LWM-dominance),并理论证明了LWM非支配解集是Pareto非支配解集的子集,同时保留了种群中重要的角解。进一步地,基于LWM支配关系,实现了一个高维多目标进化优化算法,基于该算法的实验验证了LWM支配关系的性质。在随机解空间中的实验结果表明LWM支配关系适用于5~15个目标的高维多目标优化问题,通过DTLZ1~DTLZ7高维多目标优化问题进化过程中LWM非支配解集与Pareto非支配解集规模的对比实验,结果表明优化目标数为10和15时非支配解的比例平均下降了约17%。  相似文献   

5.
为提高进化多目标优化算法在维持最优解多样性方面的性能,获得分布更均匀的Pareto非支配解集,文中提出一种具有多形态种群协同进化的多目标优化算法.该算法构建一种多形态种群协同进化架构,通过引入最小向量夹角的相似性度量方法,给出次优非支配个体选择策略,从而提高种群的多样性.算法还提出一种基于排序链表的拥挤个体删除策略,进一步提高解集分布的均匀性和宽广性.与经典算法对比结果表明,文中算法在解的分布性和多样性方面均有较好表现,尤其在解集分布均匀性方面优势较明显.  相似文献   

6.
将差分进化算法(DE)用于多目标优化问题,提出了一种精英保留和进化进程中非支配解集迁移操作的差分进化算法,以保证所求得多目标优化问题Pareto最优解的多样性。采用双群体约束处理技术,构建进化群体的Pareto非支配解外部存档集,并进行基于非支配解集的迁移操作,以增加非支配解的数目和质量。用多个经典测试函数测试的结果表明,与标准DE相比,该方法收敛到问题的Pareto前沿效果良好,能有效保持Pareto最优解多样性与收敛之间的平衡。  相似文献   

7.
针对一维下料问题,提出了减少废料、减少下料设置时间和减少可回收余料的三目标优化模型,用改进的非支配排序进化算法求出问题的Pareto最优解集,运用逼近理想解方法从解集中选出一个满意解作为下料方案,各优化目标的权重用CRITIC法算出。仿真实验证明了所提出的方法可以有效解决该类多目标下料问题。  相似文献   

8.
利用双目标模型求解约束优化问题时,由于它们的最优解集并不相等,因此需要增加特殊机制确保求解双目标问题的算法收敛到原问题的最优解.为克服这一缺点,本文首先将约束优化问题转化为新的双目标优化模型,并证明了新模型的最优解集与原问题的最优解集相等.其次,以简单的差分进化为搜索算法,基于多目标Pareto支配关系的非支配排序为选择准则,提出了求解新模型的差分进化算法.最后,用10个标准测试函数的数值试验说明了新模型及求解算法的有效性.  相似文献   

9.
吴定会  孔飞  田娜  纪志成 《计算机应用》2015,35(6):1617-1622
针对多目标柔性作业车间调度问题,提出了带Pareto非支配解集的教与同伴学习粒子群算法。首先,以工件的最大完工时间、最大机器负荷和所有机器总负荷为优化目标建立了多目标柔性作业车间调度模型。然后,该算法结合多目标Pareto方法和教与同伴学习粒子群算法,采用快速非支配排序算法产生初始Pareto非支配解集,用提取Pareto支配层程序更新Pareto非支配解集,同时采用混合分派规则产生初始种群,采用开口向上抛物线递减的惯性权重选择策略提高算法的收敛速度。最后,对3个Benchmark算例进行仿真实验。理论分析和仿真表明,与带向导性局部搜索的多目标进化算法(MOEA-GLS)和带局部搜索的控制遗传算法(AL-CGA)相比,对于相同的测试实例,该算法能产生更多更好的Pareto非支配解;在计算时间方面,该算法要小于带向导性局部搜索的多目标进化算法。实验结果表明该算法可以有效解决多目标柔性作业车间调度问题。  相似文献   

10.
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.  相似文献   

11.
A particle swarm optimization (PSO) solver is developed based on theoretical information available from the literature. The implementation is validated by utilizing the PSO optimizer as a driver for a single discipline optimization and for a multicriterion optimization and comparing the results to a commercially available gradient based optimization algorithm, previously published results, and a simple sequential Monte Carlo model. A typical conceptual ship design statement from the literature is employed for developing the single discipline and the multicriterion benchmark optimization statements. In the main new effort presented in this paper, an approach is developed for integrating the PSO algorithm as a driver at both the top and the discipline levels of a multidisciplinary design optimization (MDO) framework which is based on the Target Cascading (TC) method. The integrated MDO/PSO algorithm is employed for analyzing a multidiscipline optimization statement reflecting the conceptual ship design problem from the literature. Results are compared to MDO analyses performed when a gradient based optimizer comprised the optimization driver at all levels. The results, the strengths, and the weaknesses of the integrated MDO/PSO algorithm are discussed as related to conceptual ship design.  相似文献   

12.
With the development of computer applications in ship design, optimization, as a powerful approach, has been widely used in the design and analysis process. However, the running time, which often varies from several weeks to months in the current computing environment, has been a bottleneck problem for optimization applications, particularly in the structural design of ships. To speed up the optimization process and adjust the complex design environment, ship designers usually rely on their personal experience to assist the design work. However, traditional experience, which largely depends on the designer’s personal skills, often makes the design quality very sensitive to the experience and decreases the robustness of the final design. This paper proposes a new machine-learning-based ship design optimization approach, which uses machine learning as an effective tool to give direction to optimization and improves the adaptability of optimization to the dynamic design environment. The natural human learning process is introduced into the optimization procedure to improve the efficiency of the algorithm. Q-learning, as an approach of reinforcement learning, is utilized to realize the learning function in the optimization process. The multi-objective particle swarm optimization method, multi-agent system, and CAE software are used to build an integrated optimization system. A bulk carrier structural design optimization was performed as a case study to evaluate the suitability of this method for real-world application.  相似文献   

13.

Reducing lifetime fuel consumption (LFC) and energy efficiency design index (EEDI) are two of the main concerns of shipping industry in recent years. This paper presents a multi-disciplinary and multi-level optimization scheme-based software (HPS-MOP2) to design a hull–propeller system simultaneously from the LFC and EEDI point of view in early-stage ship design. Calculations of the ship resistance and propeller performance are essential to optimize the ship hull–propeller system. Two numerical methods with variable fidelity, non-uniform rational basis spline (NURBS) geometry modelling technique and new version of multi-objective evolutionary algorithm based on decomposition (MOEA/D) are three main parts of the proposed methodology. A bulk carrier propelled by a well-known propeller is used as a base model in three different study cases based on specific fuel oil consumption (SFOC) curves provided by the engine manufacturers Wartsila, MAN and Caterpillar. The presented results illustrate that the employed approach may achieve cost- and energy-efficient designs.

  相似文献   

14.
为提高船舶设计效率,针对国际船级社协会(International Association of Classification Societies, IACS)2006年推出的散货船、双壳油船共同结构规范CSR-BC/OT,中国船级社(China Classification Society, CCS)开发出计算软件CSR-SDP. 该软件分为针对散货船的CSR-SDP(BC)和针对双壳油船的CSR-SDP(OT)两套,是集规范设计,载荷计算以及船体结构强度分析、评估和疲劳寿命评估于一体的船体结构设计和规范校核系统,较全面地覆盖CSR-BC/OT的要求,较好地满足CSR船舶设计和审图的需要.  相似文献   

15.
Ship design is a complex endeavor requiring the successful coordination of many disciplines, of both technical and non-technical nature, and of individual experts to arrive at valuable design solutions. Inherently coupled with the design process is design optimization, namely the selection of the best solution out of many feasible ones on the basis of a criterion, or rather a set of criteria. A systemic approach to ship design may consider the ship as a complex system integrating a variety of subsystems and their components, for example, subsystems for cargo storage and handling, energy/power generation and ship propulsion, accommodation of crew/passengers and ship navigation. Independently, considering that ship design should actually address the whole ship’s life-cycle, it may be split into various stages that are traditionally composed of the concept/preliminary design, the contractual and detailed design, the ship construction/fabrication process, ship operation for an economic life and scrapping/recycling. It is evident that an optimal ship is the outcome of a holistic optimization of the entire, above-defined ship system over her whole life-cycle. But even the simplest component of the above-defined optimization problem, namely the first phase (conceptual/preliminary design), is complex enough to require to be simplified (reduced) in practice. Inherent to ship design optimization are also the conflicting requirements resulting from the design constraints and optimization criteria (merit or objective functions), reflecting the interests of the various ship design stake holders.The present paper provides a brief introduction to the holistic approach to ship design optimization, defines the generic ship design optimization problem and demonstrates its solution by use of advanced optimization techniques for the computer-aided generation, exploration and selection of optimal designs. It discusses proposed methods on the basis of some typical ship design optimization problems with multiple objectives, leading to improved and partly innovative designs with increased cargo carrying capacity, increased safety and survivability, reduced required powering and improved environmental protection. The application of the proposed methods to the integrated ship system for life-cycle optimization problem remains a challenging but straightforward task for the years to come.  相似文献   

16.
More and more complicated conceptual design of ship’s engine room (CDSER) heavily depends on designers’ engineering knowledge and existing ship data. To achieve intelligent design at the initial ship design stage, many researchers have made much significant progress in this field, however, most of them only focused on how to find the similar constructed ships. At present, how to utilize these existing data remains an untouched topic. In order to make good use of the existing data and reduce the dependence on designers’ experience, a novel system named Expert System for Aided Conceptual Design of Ship’s Engine Room Automation (ESACD), is elaborated in this study. With the support of the constructed Ship Data Warehouse System, two core subsystems Configuration Selection Assistant (CSA) and Design Scheme Decision Assistant (DSDA) are included in ESACD. A promising approach integrating Fuzzy c-means algorithm (FCM) and Rough Sets Theory (RST) to extract configuration rules from the stored data is adopted in CSA. According to engineers’ proposals, RST is utilized to reason knowledge in incomplete scheme information systems for getting design scheme rules in DSDA, which are useful suggestions for engineers to get better schemes at this stage. Finally, the validity and necessity of this interactive expert system are demonstrated through the CDSER of a new 50,000 DWT Handymax bulk carrier. It is proved that ESACD can efficiently facilitate rapid and intelligent design in CDSER, and reduce the cost of a new ship design.  相似文献   

17.

This paper describes a methodology to design and optimize a controllable pitch propeller suitable for small leisure ship boats. A proper range for design parameters has to be set by the user. An optimization based on the Particle Swarm Optimization algorithm is carried out to minimize a fitness function representing the engine’s fuel consumption. The OpenProp code has been integrated in the procedure to compute thrust and torque. Blade’s geometry and tables about pitch, thrust and consumption are the main output of the optimization process. A case study has been included to show how the procedure can be implemented in the design process. A case study shows that the procedure allows a designer to sketch a controllable pitch propeller with optimal efficiency; computational times are compatible with the design conceptual phase where several scenarios must be investigated to set the most suitable for the following detailed design. A drawback of this approach is given by the need for a quite skilled user in charge of defining the allowable ranges for design parameters, and the need for data about the engine and boat to be designed.

  相似文献   

18.
Product optimization involves selecting design, manufacturing, and support attributes that can produce the best system. Producibility or manufacturability is the term often used to describe the relative ease of manufacturing a product. In complex systems, productibility optimization is a very difficult process, particularly when the values of many attributes are restricted by constraints. One challenge is to develop more universal producibility metrics for the conceptual design phase when design information is limited and drawings are nondimensional. This paper develops a new method for producibility optimization in conceptual design based on a combination of both decision theoretic and expert system techniques. Decision theoretic techniques provide the means to model the design for producibility problem in a manner that can deal with risk, uncertainty, and user (or corporate) preferences, and can effectively integrate diverse factors to provide a measure of the overall worth of a design. The particular decision theoretic approach employed is based on multi-attribute utility theory. An illustrative example of the methodology is applied to the conceptual design of a structural composite part.  相似文献   

19.
The Mobile Harbor (MH) has been recently proposed as a novel maritime cargo transfer system that can move to a container ship anchored in the deep sea and handle containers directly at sea with the aid of a stabilized MH crane. Because this system operates under at-sea conditions, the MH crane must be designed to support an inertia load and wind force, as well as its self-weight. The wave-induced motions of the MH, e.g. rolling, pitching, and heaving, generate a significant amount of inertia load, which has not been considered in the design of conventional quayside cranes installed on stable ground. Wind force is also a critical design factor due to the higher wind velocity in the open sea. In addition to the aforementioned structural rigidity, mass minimization is also important in the structural design of MH cranes because it reduces the overturning moment and therefore enhances ship stability. In this paper, the sensitivities of the design-dependent loads (i.e. self-weight, inertia load, and wind force) are derived with respect to the design variables, and then a topology optimization is conducted with the derived sensitivities in order to obtain a conceptual design. Then, the conceptual design is elaborated into a three-dimensional basic design through shape optimization with design regulations for offshore cranes. Through the integrated design process with the topology and shape optimizations, a conceptual and basic design is successfully obtained for the MH crane.  相似文献   

20.
针对具有内部参数不确定性和外部扰动的海上船舶设计了航向自抗扰控制器,并解决了舵机模型中舵角的限幅和限速问题,基于滑模控制理论提出了反馈控制带宽的计算方法.采用频域分析的方法,系统地分析了自抗扰控制器对外部波浪扰动的抑制能力、模型参数不确定时的鲁棒性;结合作者实船工作经验以及系统动态特性与控制参数的关系,提出了船舶航向控制器参数的配置规律;最后以一艘57000吨级散货船为控制对象,验证了航向控制器的鲁棒性和本文所述参数配置规律的有效性.为将自抗扰控制算法应用于船舶自动舵设计提供理论依据和实践参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号