首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 596 毫秒
1.
依据OPTICS可视化密度模型计算球形分布对象的密度扩张序列,指数缩减自适应水平阈值以获取聚类数量和聚类邻域;基于粗集理论计算各聚类核的上下近似区域,通过该邻域系统实现显式的对象划分方法.依据对象聚类邻域确定聚类数量和聚类核,以及对象的粗糙近似划分,使得聚类具有密度自适应和孤点不敏感的特点,取样分析有效提高了算法效率.  相似文献   

2.
《计算机科学与探索》2016,(11):1614-1622
密度峰聚类是一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,能够发现非球形簇。针对密度峰聚类算法需要人工确定聚类中心的缺陷,提出了一种自动确定聚类中心的密度峰聚类算法。首先,计算每个数据点的局部密度和该点到具有更高密度数据点的最短距离;其次,根据排序图自动确定聚类中心;最后,将剩下的每个数据点分配到比其密度更高且距其最近的数据点所属的类别,并根据边界密度识别噪声点,得到聚类结果。将新算法与原密度峰算法进行对比,在人工数据集和UCI数据集上的实验表明,新算法不仅能够自动确定聚类中心,而且具有更高的准确率。  相似文献   

3.
密度聚类是数据挖掘和机器学习中最常用的分析方法之一,无须预先指定聚类数目就能够发现非球形聚类簇,但存在无法识别不同密度的相邻聚类簇等问题。采用逆近邻和影响空间的思想,提出一种密度聚类分析算法。利用欧氏距离计算数据对象的K近邻与逆近邻,依据逆近邻识别其核心对象,并确定其核心对象的影响空间;利用逆近邻和影响空间,重新定义密度聚类簇扩展条件,并通过广度优先遍历搜索核心对象的影响空间,形成密度聚类簇,有效解决了无法区分不同密度相邻聚类簇等不足,提高了密度聚类分析效果和效率。基于UCI和人工数据集实验验证了该算法的有效性。  相似文献   

4.
为了解决密度峰值聚类算法(Density Peaks Clustering algorithm,DPC)设置截止距离和选择聚类中心过程中的问题,一种新的自调节步长果蝇优化算法被用于密度峰值聚类的重要参数截止距离的计算,设计了一种自适应选择聚类中心的方法.在截止距离计算过程中,根据迭代过程中每一步之间的最优浓度与最差浓度的差值变化率动态的调节寻优步长,其寻优效率与精度均优于现存的改进果蝇算法.在聚类中心的选择过程中,由局部密度与距离乘积的分布情况,自适应的选择聚类中心.本文提出的自调节步长果蝇优化的自适应密度峰值聚类算法的计算精度和效率均优于现存的密度峰值聚类改进算法,并能完全自适应的实现数据的聚类.  相似文献   

5.
针对K-Prototypes聚类算法中人为指定初始聚类中心和聚类数目导致算法准确度和稳定性低下的问题,提出了基于密度优化的K-Prototypes聚类算法,该算法根据数据对象的密度分布,自适应地优化聚类数目和初始聚类中心的设置,并通过区分每个属性对聚类结果的不同影响权重,改进相异度计算公式,提升聚类的准确度。在合成数据集和UCI数据集上实验结果表明,该算法与K-Prototypes算法、DPCM算法和Fuzzy K-Prototypes算法相比,平均准确率分别提高了8.52%、4.28%和8.33%,达到了相对较好的聚类结果。  相似文献   

6.
针对粗糙K-means聚类及其相关衍生算法需要提前人为给定聚类数目、随机选取初始类簇中心导致类簇交叉区域的数据划分准确率偏低等问题,文中提出基于混合度量与类簇自适应调整的粗糙模糊K-means聚类算法.在计算边界区域的数据对象归属于不同类簇的隶属程度时,综合考虑局部密度和距离的混合度量,并采用自适应调整类簇数目的策略,获得最佳聚类数目.选取数据对象稠密区域中距离最小的两个样本的中点作为初始类簇中心,将附近局部密度高于平均密度的对象划分至该簇后再选取剩余的初始类簇中心,使初始类簇中心的选取更合理.在人工数据集和UCI标准数据集上的实验表明,文中算法在处理类簇交叠严重的球簇状数据集时,具有自适应性,聚类精度较优.  相似文献   

7.
谱聚类将数据聚类问题转化成图划分问题,通过寻找最优的子图,对数据点进行聚类。谱聚类的关键是构造合适的相似矩阵,将数据集的内在结构真实地描述出来。针对传统的谱聚类算法采用高斯核函数来构造相似矩阵时对尺度参数的选择很敏感,而且在聚类阶段需要随机确定初始的聚类中心,聚类性能也不稳定等问题,本文提出了基于消息传递的谱聚类算法。该算法采用密度自适应的相似性度量方法,可以更好地描述数据点之间的关系,然后利用近邻传播(Affinity propagation,AP)聚类中“消息传递”机制获得高质量的聚类中心,提高了谱聚类算法的性能。实验表明,新算法可以有效地处理多尺度数据集的聚类问题,其聚类性能非常稳定,聚类质量也优于传统的谱聚类算法和k-means算法。  相似文献   

8.
针对传统模糊C均值聚类算法和基于K-means++优化聚类中心的模糊C均值算法存在初始聚类中心敏感、聚类速度收敛慢、聚类算法需要人为给定聚类数目等缺陷,受密度峰值聚类算法(Clustering by Fast Search and Find of Density Peaks,CFSFDP)的启发,提出了基于密度峰值算法优化的模糊C均值聚类算法,自适应产生初始聚类中心,确定聚类数目,并优化算法收敛过程。实验结果表明,改进后的算法与传统模糊聚类C均值算法相比能够准确地得到簇的数目,性能有明显的提高,并加快算法的收敛速度,达到相对更好的聚类效果。  相似文献   

9.
为了提高K-medoids算法的精度和稳定性,并解决K-medoids算法的聚类数目需要人工给定和对初始聚类中心点敏感的问题,提出了基于密度权重Canopy的改进K-medoids算法。该算法首先计算数据集中每个样本点的密度值,选择密度值最大的样本点作为第1个聚类中心,并从数据集中删除这个密度簇;然后通过计算剩下样本点的权重,选择出其他聚类中心;最后将密度权重Canopy作为K-medoids的预处理过程,其结果作为K-medoids算法的聚类数目和初始聚类中心。UCI真实数据集和人工模拟数据集上的仿真实验表明,该算法具有较高的精度和较好的稳定性。  相似文献   

10.
动态增量聚类的设计与实现   总被引:2,自引:0,他引:2       下载免费PDF全文
传统聚类算法往往只适用于静态数据集的聚类。对于动态数据集,新增数据后,前期的聚类结果不再可靠,运用此类算法则需要重新聚类,这样会造成效率低下和计算资源浪费。在基于密度和自适应密度可达聚类算法的基础上,提出了一种新的增量聚类算法。理论分析和实验结果证明该算法能够有效地处理动态数据集,提高聚类效率和资源的利用率。  相似文献   

11.
结合密度聚类和模糊聚类的特点,提出一种基于密度的模糊代表点聚类算法.首先利用密度对数据点成为候选聚类中心点的可能性进行处理,密度越高的点成为聚类中心点的可能性越大;然后利用模糊方法对聚类中心点进行确定;最后通过合并聚类中心点确定最终的聚类中心.所提出算法具有很好的自适应性,能够处理不同形状的聚类问题,无需提前规定聚类个数,能够自动确定真实存在的聚类中心点,可解释性好.通过结合不同聚类方法的优点,最终实现对数据的有效划分.此外,所提出的算法对于聚类数和初始化、处理不同形状的聚类问题以及应对异常值等方面具有较好的鲁棒性.通过在人工数据集和UCI真实数据集上进行实验,表明所提出算法具有较好的聚类性能和广泛的适用性.  相似文献   

12.
在不确定性数据聚类算法的研究中,普遍需要假设不确定性数据服从某种分布,继而获得表示不确定性数据的概率密度函数或概率分布函数,然而这种假设很难保证与实际应用系统中的不确定性数据分布一致。现有的基于密度的算法对初始参数敏感,在对密度不均匀的不确定性数据聚类时,无法发现任意密度的类簇。鉴于这些不足,提出基于区间数的不确定性数据对象排序识别聚类结构算法(UD-OPTICS)。该算法利用区间数理论,结合不确定性数据的相关统计信息来更加合理地表示不确定性数据,提出了低计算复杂度的区间核心距离与区间可达距离的概念与计算方法,将其用于度量不确定性数据间的相似度,拓展类簇与对象排序识别聚类结构。该算法可很好地发现任意密度的类簇。实验结果表明,UD-OPTICS算法具有较高的聚类精度和较低的复杂度。  相似文献   

13.
针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。  相似文献   

14.
传统基于划分的聚类算法需要人工给定聚类数,且由于算法采取刚性划分,可能会导致将较大或延伸状的聚类簇分割的现象,导致错误的聚类结果。密度峰聚类是近年提出的一种新的基于密度的聚类算法,该算法不需要预先指定聚类数目,且能够发现非球形簇。将密度峰思想引入基于划分的聚类算法,提出一种基于密度峰和划分的快速聚类算法(DDBSCAN),该算法首先获取一组簇的核心对象(密度峰),用于描述簇的“骨骼”,而后将周围的点划分到最近的核心对象,最后通过判断划分边界处的密度情况合并簇。实验证明,该算法能有效地适应任意形状、大小不一的数据集,与传统基于密度的聚类算法相比收敛速度更快。  相似文献   

15.
针对基于密度的DBSCAN算法对于输入参数敏感、无法聚类多密度数据集等问题,提出了一种贪心的DBSCAN改进算法(Greedy DBSCAN)。算法仅需输入一个参数MinPts,采用贪心策略自适应地寻找Eps半径参数进行簇发现,利用相对稠密度识别和判定噪声数据,在随机寻找核对象过程中使用邻域查询方式提升算法效率,最终通过簇的合并产生最终的聚类结果。实验结果表明,改进后的算法能有效地分离噪声数据,识别多密度簇,聚类准确度较高。  相似文献   

16.
传统尽均值聚类算法虽然收敛速度快,但存在聚类数后无法预先确定,并且算法对初始中心点敏感的缺点。针对上述缺点,提出了基于密度期望和聚类有效性Silhouette指标的K-均值优化算法。给出了基于密度期望的初始中心点选取方案,将处于密度期望区间内相距最远的石个样本作为初始聚类中心。该方案可有效降低尽均值算法对初始中心点的依赖,从而获得较高的聚类质量。在此基础上,可进一步通过选择合适的聚类有效性指标Silhouette4指标分析不同后值下的每次聚类结果,确定最佳聚类数,则可有效改善k-值无法预先确定的缺点。实验及分析结果验证了所提出方案的可行性和有效性。  相似文献   

17.
SUDBC:一种基于空间单元密度的快速聚类算法   总被引:3,自引:0,他引:3  
随着数据规模越来越大,要求聚类算法有很高的执行效率,很好的扩展性,能发现任意形状的聚类以及对噪音数据的不敏感性.提出了一种基于空间单元密度的快速聚类算法SUDBC,该算法首先将被聚类的数据划分成若干个空间单元,然后基于空间单元密度将密度超过给定阈值的邻居单元合并为一个类.实验结果验证了SUDBC算法具有处理任意形状的数据和对噪音数据不敏感的特点.  相似文献   

18.
本论文在对各种算法深入分析的基础上,尤其在对基于密度的聚类算法he基于层次的聚类算法深入研究的基础上,提出了一种全新的基于密度和层次的快速聚类算法。该算法保持了基于密度聚类算法发现任意形状簇的优点,而且具有近似线性的时间复杂性,因此该算法适合对大规模数据的挖掘。理论分析和实验结果也证明了基于密度和层次的聚类算法具有处理任意形状簇的聚类、对噪音数据不敏感的特点,并且其执行效率明显高于传统的DBSCAN算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号