首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
基于粒计算的K-medoids聚类算法   总被引:1,自引:0,他引:1  
马箐  谢娟英 《计算机应用》2012,32(7):1973-1977
传统K-medoids聚类算法的聚类结果随初始中心点不同而波动,且计算复杂度较高不适于处理大规模数据集;快速K-medoids聚类算法通过选择合适的初始聚类中心改进了传统K-medoids聚类算法,但是快速K-medoids聚类算法的初始聚类中心有可能位于同一类簇。为克服传统K-medoids聚类算法和快速K-medoids聚类算法的缺陷,提出一种基于粒计算的K-medoids聚类算法。算法引入粒度概念,定义新的样本相似度函数,基于等价关系产生粒子,根据粒子包含样本多少定义粒子密度,选择密度较大的前K个粒子的中心样本点作为K-medoids聚类算法的初始聚类中心,实现K-medoids聚类。UCI机器学习数据库数据集以及随机生成的人工模拟数据集实验测试,证明了基于粒计算的K-medoids聚类算法能得到更好的初始聚类中心,聚类准确率和聚类误差平方和优于传统K-medoids和快速K-medoids聚类算法,具有更稳定的聚类结果,且适用于大规模数据集。  相似文献   

2.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

3.
针对快速K-me doids聚类算法所选初始聚类中心可能位于同一类簇的缺陷,以及基于粒计算的K-medoids算法构造样本去模糊相似矩阵时需要主观给定阈值的缺陷,提出了粒计算优化初始聚类中心的K-medoids聚类算法。该算法结合粒计算与最大最小距离法,优化K-medoids算法初始聚类中心的选取,选择处于样本分布密集区域且相距较远的K个样本作为初始聚类中心;使用所有样本的相似度均值作为其构造去模糊相似矩阵的阈值。人工模拟数据集和UCI机器学习数据库数据集的实验测试表明,新K-medoids聚类算法具有更稳定的聚类效果,其准确率和Adjusted Rand Index等聚类结果评价指标值优于传统K-medoids聚类算法、快速K-medoids聚类算法和基于粒计算的K-medoids聚类算法。  相似文献   

4.
针对二分K-均值算法由于随机选取初始中心及人为定义聚类数而造成的聚类结果不稳定问题,提出了基于密度和中心指标的Canopy二分K-均值算法SDC_Bisecting K-Means。首先计算样本中数据密度及其邻域半径;然后选出密度最小的数据并结合Canopy算法的思想进行聚类,将得到的簇的个数及其中心作为二分K-均值算法的输入参数;最后在二分K-均值算法的基础上引入指数函数和中心指标对原始样本进行聚类。利用UCI数据集和自建数据集进行模拟实验对比,结果表明SDC_Bisecting K-Means不仅使得聚类结果更精确,同时算法的运行速度更快、稳定性更好。  相似文献   

5.
针对快速K-medoids聚类算法存在密度计算复杂耗时和初始聚类中心可能位于同一类簇的缺陷,以及基于邻域的K-medoids算法的邻域半径需要人为给定一个调节系数的主观性缺陷,分别以样本间距离均值和相应样本的标准差为邻域半径,以方差作为样本分布密集程度的度量,选取方差值最小且其间距离不低于邻域半径的样本为K-medoids的初始聚类中心,提出了两种方差优化初始中心的K-medoids算法。在UCI数据集和人工模拟数据集上进行了实验测试,并对各种聚类指标进行了比较,结果表明该算法需要的聚类时间短,得到的聚类结果优,适用于较大规模数据集的聚类。  相似文献   

6.
潘楚  罗可 《计算机应用》2014,34(7):1997-2000
针对传统K-medoids聚类算法对初始聚类中心敏感、收敛速度缓慢以及聚类精度不够高等缺点,提出一种基于改进粒计算、粒度迭代搜索策略和优化适应度函数的新算法。该算法利用粒计算思想在有效粒子中选择K个密度大且距离较远的粒子,选择其中心点作为K个聚类初始中心点;并在对应的K个有效粒子中进行中心点更新,来减少迭代次数;采用类间距离和类内距离优化适应度函数来提高聚类的精度。实验结果表明:该算法在UCI多个标准数据集中测试,在有效缩短迭代次数的同时提高了算法聚类准确率。  相似文献   

7.
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。  相似文献   

8.
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。  相似文献   

9.
k-means聚类算法的有效性依赖于初始中心的选择。提出一种利用样本点空间分布的邻域密度来选择合理的初始中心的算法。提出的算法是对DK算法[2]的一种改进。有两方面改进:一是通过合理地选择距离阈值来静态地选择初始聚类中心,称为DK-Ⅱ-S算法;二是通过对选择样本点计算密度与已选择聚类中心最小距离的加权,使得该点被选择为初始中心点的概率与这个加权成正比,动态地选择初始聚类中心,称为DK-Ⅱ-D算法。在一个实际文本数据集上进行实验计算,证实算法改进的效果良好。  相似文献   

10.
针对K-Prototypes聚类算法中人为指定初始聚类中心和聚类数目导致算法准确度和稳定性低下的问题,提出了基于密度优化的K-Prototypes聚类算法,该算法根据数据对象的密度分布,自适应地优化聚类数目和初始聚类中心的设置,并通过区分每个属性对聚类结果的不同影响权重,改进相异度计算公式,提升聚类的准确度。在合成数据集和UCI数据集上实验结果表明,该算法与K-Prototypes算法、DPCM算法和Fuzzy K-Prototypes算法相比,平均准确率分别提高了8.52%、4.28%和8.33%,达到了相对较好的聚类结果。  相似文献   

11.
为了更好地评价无监督聚类算法的聚类质量,解决因簇中心重叠而导致的聚类评价结果失效等问题,对常用聚类评价指标进行了分析,提出一个新的内部评价指标,将簇间邻近边界点的最小距离平方和与簇内样本个数的乘积作为整个样本集的分离度,平衡了簇间分离度与簇内紧致度的关系;提出一种新的密度计算方法,将样本集与各样本的平均距离比值较大的对象作为高密度点,使用最大乘积法选取相对分散且具有较高密度的数据对象作为初始聚类中心,增强了K-medoids算法初始中心点的代表性和算法的稳定性,在此基础上,结合新提出的内部评价指标设计了聚类质量评价模型,在UCI和KDD CUP 99数据集上的实验结果表明,新模型能够对无先验知识样本进行有效聚类和合理评价,能够给出最优聚类数目或最优聚类范围.  相似文献   

12.
针对K中心点算法的初始聚类中心可能过于临近、代表性不足、稳定性差等问题,提出一种改进的K中心点算法。将样本集间的平均距离与样本间的平均距离的比值作为样本的密度参数,精简了高密度点集合中候选代表点的数量,采用最大距离乘积法选择密度较大且距离较远的K个样本作为初始聚类中心,兼顾聚类中心的代表性和分散性。在UCI数据集上的实验结果表明,与传统K中心点算法和其他2种改进聚类算法相比,新提出的算法不仅聚类结果更加准确,同时也具有更快的收敛速度和更高的稳定性。  相似文献   

13.
黄学雨  向驰  陶涛 《计算机应用研究》2021,38(10):2988-2993,3024
对于基于划分的聚类算法随机选取初始聚类中心导致初始中心敏感,聚类结果不稳定、集群效率低等问题,提出一种基于MapReduce框架和改进的密度峰值的划分聚类算法(based on MapReduce framework and im-proved density peak partition clustering algorithm,MR-IDPACA).首先,通过自然最近邻定义新的局部密度计算方式,将搜索样本密度峰值点作为划分聚类算法的初始聚类中心;其次针对算法在大规模数据下运行时间复杂,提出基于E2LSH(exact Euclidean locality sensitive hashing)的一种分区方法,即KLSH(K of locality sensitive hashing).通过该方法对数据分区后结合MapReduce框架并行搜寻初始聚类中心,有效减少了算法在搜索初始聚类中心时的运行时间;对于MapReduce框架中的数据倾斜问题,提出ME(multistage equilibrium)策略对中间数据进行多段均衡分区,以提升算法运行效率;在MapReduce框架下并行聚类,得到最终聚类结果.实验得出MR-IDPACA算法在单机环境下有着较高的准确率和较强的稳定性,集群性能上也有着较好的加速比和运行时间,聚类效果有所提升.  相似文献   

14.
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。  相似文献   

15.
针对主动学习中构造初始分类器难以选取代表性样本的问题,提出一种模糊核聚类采样算法。该算法首先通过聚类分析技术将样本集划分,然后分别在类簇中心和类簇边界区域选取样本进行标注,最后依此构造初始分类器。在该算法中,通过高斯核函数把原始样本空间中的点非线性变换到高维特征空间,以达到线性可聚的目的,并引入了一种基于局部密度的初始聚类中心选择方法,从而改善聚类效果。为了提高采样质量,结合划分后各类簇的样本个数设计了一种采样比例分配策略。同时,在采样结束阶段设计了一种后补采样策略,以确保采样个数达标。实验结果分析表明,所提算法可以有效地减少构造初始分类器所需的人工标注负担,并取得较高的分类正确率。  相似文献   

16.
针对模糊C均值(Fuzzy C-Means,FCM)聚类算法对初始聚类中心和噪声敏感、对边界样本聚类不够准确且易收敛于局部极小值等问题,提出了一种K邻近(KNN)优化的密度峰值(DPC)算法和FCM相结合的融合聚类算法(KDPC-FCM)。算法利用样本的K近邻信息定义样本局部密度,快速准确搜索样本的密度峰值点样本作为初始类簇中心,改善FCM聚类算法存在的不足,从而达到优化FCM聚类算法效果的目的。在多个UCI数据集、单个人造数据集、多种基准数据集和Geolife项目中的6个较大规模数据集上的实验结果表明,改进后的新算法与传统FCM算法、DSFCM算法对比,有着更好的抗噪性、聚类效果和更快的全局收敛速度,证明了新算法的可行性和有效性。  相似文献   

17.

为确定??-means 等聚类算法的初始聚类中心, 首先由样本总量及其取值区间长度确定对应维上的样本密度统计区间数, 并将满足筛选条件的密度峰值所在区间内的样本均值作为候选初始聚类中心; 然后, 根据密度峰值区间在各维上的映射关系建立候选初始聚类中心关系树, 进一步采用最大最小距离算法获得初始聚类中心; 最后为确定最佳聚类数, 基于类内样本密度及类密度建立聚类有效性评估函数. 针对人工数据集及UCI 数据集的实验结果表明了所提出算法的有效性.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号