首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
由于超强的计算能力、高速访存带宽、支持大规模数据级并行程序设计等特点,GPU已经成为超级计算机和高性能计算(HPC)集群的主流加速器。随着处理单元的发展和集群节点的拓展,GPU集群不仅在节点层面呈现异构化,节点内也趋于异构化,大大提高了在GPU集群中编程的复杂度。主流GPU异构集群系统大多采用针对GPU的异构计算编程模型与面向分布式内存的消息传递模型的简单结合方式,这种方式使得GPU集群程序设计缺乏确定的准则,往往是低效而且易错的。为了提高在GPU集群中编程的效率,降低编程复杂度,以及实现平台无关性,提出一套异构GPU集群的并行分布式编程的解决方案。该方案通过采用扩展语言方法提出了编程框架DISPAR,并实现了预处理器系统StreamCC。实验证明了其可行性。  相似文献   

2.
在异构资源环境中高效利用计算资源是提升任务效率和集群利用率的关键。Kuberentes作为容器编排领域的首选方案,在异构资源调度场景下调度器缺少GPU细粒度信息无法满足用户自定义需求,并且CPU/GPU节点混合部署下调度器无法感知异构资源从而导致资源竞争。综合考虑异构资源在节点上的分布及其硬件状态,提出一种基于Kubernetes的CPU/GPU异构资源细粒度调度策略。利用设备插件机制收集每个节点上GPU的详细信息,并将GPU资源指标提交给调度算法。在原有CPU和内存过滤算法的基础上,增加自定义GPU信息的过滤,从而筛选出符合用户细粒度需求的节点。针对CPU/GPU节点混合部署的情况,改进调度器的打分算法,动态感知应用类型,对CPU和GPU应用分别采用负载均衡算法和最小最合适算法,保证异构资源调度策略对不同类型应用的正确调度,并且在CPU资源不足的情况下充分利用GPU节点的碎片资源。通过对GPU细粒度调度和CPU/GPU节点混合部署情况下的调度效果进行实验验证,结果表明该策略能够有效进行GPU调度并且避免资源竞争。  相似文献   

3.
为有效提高异构的CPU/GPU集群计算性能,提出一种支持异构集群的CPU与GPU协同计算的两级动态调度算法。根据各节点计算能力评测结果和任务请求动态分发数据,在节点内CPU和GPU之间动态调度任务,使用数据缓存和数据处理双队列机制,提高异构集群的传输和处理效率。该算法实现了集群各节点“能者多劳”,避免了单节点性能瓶颈造成的任务长尾现象。实验结果表明,该算法较传统MPI/GPU并行计算性能提高了11倍。  相似文献   

4.
GPU集群已经成为高性能计算的重要方式,特别对于计算密集型应用,具有成本低、性能高、功耗小的优势.为了解决GPU集群系统运行中的任务负载均衡问题,文中提出了一种面向计算密集型应用的异构GPU集群调度方法,该方法可以自动发现计算节点,并动态估计计算节点的计算能力,并根据计算能力、任务的计算强度和优先级在异构GPU集群上合理分配计算资源.同时,该系统还具有容错能力,能够处理计算节点的意外退出,可恢复意外退出计算节点的计算任务,并动态适应系统的计算规模.通过实验表明,文中采用的策略达到了预期目的  相似文献   

5.
基于异构GPU集群的主流编程方法是MPI与CUDA的混合编程或者其简单变形。因为对底层的集群架构不透明,程序员对GPU集群采用MPI与CUDA编写应用程序时需要人为考虑硬件计算资源,复杂度高、可移植性差。为此,基于数据流模型设计和实现面向节点异构GPU集群体系结构的新型编程框架分布式并行编程框架(DISPAR)。 DISPAR框架包含2个子系统:(1)代码转换系统StreamCC,是DISPAR源代码到MPI+CUDA代码的自动转换器。(2)任务分配系统StreamMAP,具有自动发现异构计算资源和任务自动映射功能的运行时系统。实验结果表明,该框架有效简化了GPU集群应用程序的编写,可高效地利用异构GPU集群的计算资源,且程序不依赖于硬件平台,可移植性较好。  相似文献   

6.
大数据计算中存在流计算、内存计算、批计算和图计算等不同模式,各种计算模式有不同的访存、通信和资源利用等特征。GPU异构集群在大数据分析处理中得到广泛应用,然而缺少研究GPU异构集群在大数据分析中的计算模型。多核CPU与GPU协同计算时不仅增加了计算资源的密度,而且提高节点间和节点内的通信复杂度。为了从理论上研究GPU与多核CPU协同计算问题,面向多种计算模式建立一个多阶段的协同计算模型(p-DCOT)。p-DCOT以BSP大同步并行模型为核心,将协同计算过程分成数据层、计算层和通信层三个层次,并且延用DOT模型的矩阵来形式化描述计算和通信行为。通过扩展p-DOT模型描述节点内和节点间的协同计算行为,细化了负载均衡的参数并证明时间成本函数,最后用典型计算作业验证模型及参数分析的有效性。该协同计算模型可成为揭示大数据分析处理中协同计算行为的工具。  相似文献   

7.
研究GPU/CPU异构系统任务调度的节能问题.与传统同构体系结构相比,异构系统任务调度呈现较大的随机性和不定性,GPU/CPU异构系统中时间间隙片段呈现了较大的随机性,导致传统调度方法很难建立规则的描述时间片段的模型,调度能耗较高.为解决上述问题,提出了一种改进功耗优化的GPU/CPU异构环境下的任务调度算法,将任务关系图按照依赖关系计算量拆分,并分配到计算节点.在计算节点内根据权重法的思想,统计所有计算节点的处理情况,进而将节点内的子任务调度到合适的处理器.实验结果表明,在不影响应用性能的前提下,降低了异构系统的能耗开销,优化效果明显.  相似文献   

8.
Flink流处理系统默认的任务调度策略在一定程度上忽略了集群异构和节点可用资源,导致集群整体负载不均衡。研究分布式节点的实时性能和集群作业环境,根据实际作业环境的异构分布情况,设计结合异构Flink集群的节点优先级调整方法,以基于Ganglia可扩展分布式集群资源监控系统的集群信息为依据,动态调整适应当前作业环境的节点优先级指数。基于此提出Flink节点动态自适应调度策略,通过实时监测节点的异构状况,并在任务执行过程中根据实时作业环境更新节点优先级指数,为系统任务找到最佳的执行节点完成任务分配。实验结果表明,相比于Flink默认的任务调度策略,基于节点优先级调整方法的自适应调度策略在WorldCount基准测试中的运行时间约平均减少6%,可使异构Flink集群在保持集群低延迟的同时,节点资源利用率和任务执行效率更高。  相似文献   

9.
由于硬件资源的更新换代,集群中各个节点的计算能力会变得不一致。集群异构的出现导致集群计算资源不均衡。目前Spark大数据平台在任务调度时未考虑集群的异构性以及节点资源的利用情况,影响了系统性能的发挥。构建了集群节点的评价指标体系,提出利用节点的优先级来表示其计算能力。提出的节点优先级调整算法能够根据任务执行过程中节点的状态动态调整各个节点的优先级。基于节点优先级的Spark动态自适应调度算法(SDASA)则根据实时的节点优先级值完成任务的分配。实验表明,SDASA能够缩短任务在集群中的执行时间,从而提升集群整体计算性能。  相似文献   

10.
深度神经网络(deep neural network,DNN)已广泛应用于人类社会的许多领域.大规模的DNN模型可显著提高识别精度,然而在单个GPU设备上训练大规模的DNN模型需要耗费大量的时间.因此,如何借助分布式深度学习(distributed deep learning,DDL)技术,在GPU集群上并行地训练多DNN模型已受到工业界和学术界的广泛关注.基于此,提出一种面向GPU集群的动态资源调度(dynamic resource scheduling,DRS)方法,解决异构带宽环境下具有截止时间要求的多DNN任务调度问题.具体来说,首先基于Ring-AllReduce通信方式构建资源-时间模型,以衡量DDL任务在不同资源方案下的运行时间;然后基于截止时间需求构建了资源-性能模型,以实现高效的资源利用;最后,结合上述资源-时间和资源-性能模型设计了DRS算法,为多DNN任务训练实现资源方案决策.在DRS算法中融入最近截止时间原则进行实际资源分配,并利用资源迁移机制减少调度过程中出现的资源碎片场景的影响.在4个NVIDIA GeForce RTX 2 080 Ti的GPU集群上的异构...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号