首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
基于压缩感知理论的单像素成像系统研究   总被引:1,自引:0,他引:1       下载免费PDF全文
近年来出现的压缩感知理论为信号处理的发展开辟了一条新的道路,它指出可压缩或者稀疏信号的少量线性投影含有足够的信息来进行信号重建和信号处理,在压缩感知理论的基础上,一种新的单像素成像系统的发展得到了广泛的关注,它的主要特点就是只用一个像素的探测器通过用少于图像像素值的采样数目来重建图像,主要介绍了基于压缩感知理论的单像素成像系统的图像重建算法,为单像素成像系统的发展做了有益的探索。  相似文献   

2.
压缩感知理论为快速磁共振成像提供了一种系统的理论框架,即通过少量非相干的采样数据便可实现精确的图像重建。然而,在高度欠采样的情况下,混叠伪影依然很严重。目前,已有大量的研究工作探讨了利用来自参考图像的先验信息来提高重建质量的方法。文章提出基于参考图像梯度方向先验的压缩感知磁共振成像方法。该方法通过约束目标图像中结构边缘的切向量与参考图像中对应位置的法向量相垂直,以使目标图像中结构边缘的方向和参考图像保持一致。最后,运用多对比度扫描的实验数据,通过与传统的压缩感知磁共振成像方法相比较,验证了该方法能够实现快速且高质量的磁共振成像。  相似文献   

3.
针对传统的激光成像技术有大量冗余数据的缺点,提出一种基于压缩感知(CS)理论的激光照明成像方法。阐述了压缩感知的基本原理,进行了图像恢复算法仿真。仿真结果表明:随着采样率的提高,成像质量有明显的提高;随着目标物体稀疏性的提高,图像重构需要的采样次数减少。设计了成像实验系统,实现了32像素×32像素的图像恢复,证明了所提成像技术的可行性。  相似文献   

4.
文章针对传统太赫兹时域光谱成像技术存在的扫描时间长以及数据存储量大等问题,提出了一种基于压缩感知理论的空间欠采样太赫兹时域光谱成像方法。首先通过扫描电机获得目标非等间隔欠采样信号,然后利用压缩感知方法来重构缺失像素点的太赫兹信息。实验结果显示,当压缩比为0.5时,所重构的太赫兹信号与全采样条件下的信号相关性可达99.95%。通过对压缩重建图像的显示分析,时域图像中的缓变区域和频谱成像中的低频信号恢复效果较好。该方法为快速太赫兹光谱成像提供了一种有效的技术手段。  相似文献   

5.
超分辨率被认为是光学成像和图像处理的"圣杯"之一.压缩感知理论的引入给出一种新的实现从单幅低分辨率图像的超分辨率重构方法,避免了传统超分辨率方法需要多幅亚像素图像的弊端.在分析压缩感知测量矩阵与光学成像系统之间对应约束异同的基础上,提出一种基于4-f光学架构的频域二元相位编码压缩成像方法,可以实现在单次曝光条件下获得的单幅低分辨率测量图像中实现超分辨率重建,不需要其他任何额外的信息采集.二元相位掩膜比均匀相位掩膜更容易物理实现,是压缩成像物理实现的一种更加可行的方案.模拟实验表明提出的方法可以有效地捕获图像的信息与高精度重建.此外,对于大尺度图像重建,该方法在重建时间方面优于Romberg提出的随机解调方法,在更符合实际方面的采样策略方面优于Yin提出的RecPC方法.  相似文献   

6.
为了在不增加系统复杂度的前提下实现对降质图像的传输、修复及超分辨率成像,基于压缩感知理论和图像的退化模型建立了一个新型的压缩感知系统.该系统利用图像退化模型中降采样操作和模糊算子改进测量矩阵,并提出了基于小波-Shearlet的图像变换作为稀疏表示方法,在重构端结合迭代硬阈值算法重建图像.实验结果表明,文中系统在重构图像的质量和运算效率上均具备一定优势.  相似文献   

7.
彩色全息压缩重构   总被引:3,自引:1,他引:2  
张成  沈川  程鸿  章权兵  陈岚  韦穗 《自动化学报》2015,41(2):419-428
压缩全息搭起Gabor全息和压缩感知(Compressed sensing, CS)理论之间的桥梁, 特别适合从单帧二维全息测量数据中重建三维对象, 是一种新兴的三维重建技术. 本文将压缩全息方法从单波长情形推广到多波长, 提出一种基于三维总变分稀疏模型的改进彩色全息压缩成像方法, 建立多波长情形下的压缩测量模型. 该方法利用对象的稀疏先验知识, 从单帧二维彩色全息图中重建多波长三维对象, 有效地实现孪生像的抑制和多层切片相互之间的散焦图像对重建质量的影响. 数值实验结果验证了本文提出方法的有效性.  相似文献   

8.
为解决合成聚焦技术用于超声成像中存在数据存储量大的问题,针对超声回波信号在频域内存在稀疏性的特点,利用压缩感知技术对其在频域进行压缩采样,使用最优化方法完成对回波信号的重建,最终将恢复的信号送入成像系统完成超声成像。通过仿真实验,将该方法用于点目标进行非均匀稀疏采样,所获得的压缩信号恢复出原始信号,完成了成像。结果表明,基于压缩感知的合成聚焦成像方法,在保证成像质量的前提下,可以大幅度减少数据量,降低系统复杂度,仅使用50%数据量,图像质量仍未出现明显失真。  相似文献   

9.
目的 随着云存储服务的普及,人们越来越习惯在云中存储图像,但存在高开销的数据传输、数据篡改以及可能泄露用户隐私的问题。为此,本文提出一种新型的基于2维压缩感知(2D compressed sensing, 2DCS)与缩略图格式保留加密(thumbnail-preserving encryption, TPE)结合的数据隐私保护方案。方法 利用确定性二进制对角(deterministic binary block diagonal, DBBD)矩阵作为测量矩阵对原始图像进行压缩采样,压缩采样的观测值能够保留图像的结构相似性,提高视觉上的观感体验,并通过误差像素集和显著性像素集生成关键像素集,利用2维离散小波变换将关键像素集嵌入压缩信号,在保证图像恢复质量的同时极大地去除冗余信息。最后通过TPE使合法用户在隐私性与可用性之间取得良好平衡。结果 该方案能够在压缩图像的同时保留图像的形态和重要特征,在压缩图像以降低存储成本的同时保证图像边缘和纹理等重要部分的重建质量。实验结果表明,重建图像的视觉效果与原图非常接近,实测平均信噪比(peak signal to noise ratio, PSN...  相似文献   

10.
现代数码相机是通过颜色过滤矩阵在每个像素位置采集一个颜色分量,重构出全彩色数字图像。压缩感知理论证明了该重构是误差有界的,但在实际应用时却隐含着一个问题:重构图像所需的稀疏编码字典是从图像数据库学习出来的,而目前数字图像都是重构出来的,因此存在着从重构的图像学习字典去重构图像的循环悖论。针对这个问题,提出并构建了新的完全采样彩色图像的Sandwich图像数据集,打破了压缩感知理论在应用于图像重构时的循环悖论,使得压缩感知方法能够真正地重建自然彩色图像。Sandwich图像数据集的构建及其训练得到的字典可以应用于如图像超分辨率重构、去噪、修复等领域。深入的图像重建实验表明,使用sandwich图像集训练的字典不论是字典原子特性还是由其重构得到的图像质量均好于基于传统数据集的结果。  相似文献   

11.
像素级图像融合需要对待融合图像的像素灰度进行综合分析与处理,而巨大的数据量给图像融合带来了极大的不便。压缩感知理论的兴起提供了一种新的数据采集和压缩方法 ,它利用图像的部分信息重构原始图像,有效减轻了图像处理的计算复杂度。本文基于对压缩感知理论的研究,把压缩感知的方法应用于图像融合,并尝试通过对压缩感知观测矩阵的改进提高融合质量。文中设计出一种适应于DCT域的射线采样矩阵,通过与随机生成的观测矩阵融合效果的比较,证明该方法取得了良好的融合效果。  相似文献   

12.
压缩感知理论突破了奈奎斯特采样频率的限制,利用该理论研究和实现了新的图像压缩采样方案.该方案利用小波变换和阈值处理相结合实现图像稀疏化,利用标准伪随机数均匀分布和二维中心傅立叶变换生成随机测量矩阵,并对小波变换后的高频子带进行加权采样,采用分段正交匹配追踪算法实现采样数据重建.仿真实验结果表明,该方案重建图像效果好.  相似文献   

13.
传统的信号获取体制要求采样率大于两倍信号带宽,这使得高速率A/D转换成为经典超宽带高分辨雷达系统的瓶颈技术之一。压缩感知理论提供了一种低速率采样的信号精确采集和重构方式。本文基于压缩感知理论,提出一种新的雷达采样与成像方法。根据目标的散射特性,采用了基于小波变换的雷达目标稀疏表示方法;结合雷达成像原理,构造了基于Fourier束的最优测量矩阵。仿真实验表明,基于压缩感知的低数据率雷达采样与成像方法,能在数据率仅为传统系统数据率15%的条件下,获得良好的成像结果,尤其是能对弱小目标进行高分辨成像。本文所提的方法可为新体制高分辨率成像雷达系统的设计提供支持。  相似文献   

14.
针对现有压缩感知核磁共振成像(CSMRI)算法在低采样率下重构质量低的问题,提出一种融合深度先验及非局部相似性的成像方法。首先,利用深度去噪器和块匹配三维滤波(BM3D)去噪器构建能够融合多种图像先验知识的稀疏表示模型;其次,将该模型作为正则化项,利用高度欠采样的k空间数据构建压缩感知核磁共振成像优化模型;最后,利用交替优化方法求解构建的优化问题。所提出的算法不仅能够通过深度去噪器利用深度先验,还能够通过BM3D去噪器利用图像的非局部相似性来进行图像重建。实验结果表明,与基于BM3D的重建算法相比,该算法在采样率为0.02、0.06、0.09及0.13情况下重构的平均峰值信噪比高出约1 dB;此外,从视觉角度,与现有的基于小波树稀疏性的核磁共振成像算法WaTMRI、基于字典学习的核磁共振成像算法DLMRI、基于字典更新及块匹配和三维滤波的核磁共振成像算法DUMRI-BM3D等相比,所提算法重构的图像包含大量纹理信息,与原始图像最接近。  相似文献   

15.
动态磁共振成像技术在时空扫描精度上不能兼顾,是目前医学界的一个难点。动态磁共振成像数据在时空域具有很强的稀疏特性,使得压缩感知技术被广泛应用于MR图像重建。提出一种基于压缩感知自适应字典学习的动态磁共振并行重建方法,以高精采样的第一帧作为参考,实现对任意n个相邻帧的dMRI图像子序列的实时并行重建。与目前国际上比较先进的两种方法DTV和kt-SLR进行比较,实验结果表明该算法在重建精度方面具有一定优势。  相似文献   

16.
不同曝光值图像的直接融合方法   总被引:1,自引:0,他引:1  
张军  戴霞  孙德全  王邦平 《软件学报》2011,22(4):813-825
提出了一种直接从同一场景多次不同曝光值下成像的LDR(low dynamic range)图像序列中提取每个像素位置最佳成像信息的图像融合方法,可以在无需任何拍摄相机参数及场景先验信息的情况下,快速合成适合在常规设备上显示的HDR(high dynamic range)图像.该方法利用特殊设计的鲁棒性曲线拟合算法建立LDR图像序列中每个像素位置像素值曲线的数学模型,并由此给出评价单个像素成像时曝光合适程度的标准和融合最佳成像像素信息的方法.对不同场景的大量实验结果显示,该方法的计算结果与传统HDR成像技术经过复杂的HDR重建和色调映射计算后得到的结果相当,但具有更高的计算效率,并同时对图像噪声、相机微小移动和运动目标的影响具有较好的鲁棒性.  相似文献   

17.
传统声纳成像系统所要采集的数据量巨大,给硬件设备以及数据的存储和传输带来很大的压力。压缩感知作为一种全新的采样理论,可以从很少的采样数据中以很大的概率重建原始信号。将压缩感知用于声纳成像,减少数据采集传输量。考虑到水下环境的复杂性,提出了A* OMP作为声纳成像算法,该算法使用A*搜索方法寻找最优原子,得到全局最优路径。实验结果表明,相比于传统OMP算法,所提算法有效地提高了声纳成像的质量。  相似文献   

18.
针对现有压缩感知核磁共振成像(CSMRI)算法在低采样率下重构质量低的问题,提出一种融合深度先验及非局部相似性的成像方法。首先,利用深度去噪器和块匹配三维滤波(BM3D)去噪器构建能够融合多种图像先验知识的稀疏表示模型;其次,将该模型作为正则化项,利用高度欠采样的k空间数据构建压缩感知核磁共振成像优化模型;最后,利用交替优化方法求解构建的优化问题。所提出的算法不仅能够通过深度去噪器利用深度先验,还能够通过BM3D去噪器利用图像的非局部相似性来进行图像重建。实验结果表明,与基于BM3D的重建算法相比,该算法在采样率为0.02、0.06、0.09及0.13情况下重构的平均峰值信噪比高出约1 dB;此外,从视觉角度,与现有的基于小波树稀疏性的核磁共振成像算法WaTMRI、基于字典学习的核磁共振成像算法DLMRI、基于字典更新及块匹配和三维滤波的核磁共振成像算法DUMRI-BM3D等相比,所提算法重构的图像包含大量纹理信息,与原始图像最接近。  相似文献   

19.
形变模型是当前人脸重建研究中的一种主要方法。针对形变模型方法中模型构建的缺陷,提出一种基于压缩感知理论的快速三维人脸重建方法。首先,利用压缩感知理论估计三维原型人脸与目标人脸的形状相似性,根据相似性对原型样本进行筛选并构建相应的形变模型,提高建模精度和效率;然后,利用特征点信息进行稀疏模型匹配,并结合径向基函数插值重建生成特定的三维人脸,提高重建表面的平滑性。在BJUT三维数据库和CAS_PEAL二维数据库上的实验结果表明,与经典方法相比,本文方法能够有效地提高重建精度和速度,重建人脸具有较强真实感。  相似文献   

20.
从欠采样数据中进行磁共振成像(简称MRI)重建一直是一项具有挑战性和吸引力的任务,因为这是一个病态问题,且伴随着压缩感知理论会具有重要的意义.基于压缩感知的多数先进稀疏表示方法是将图像分割成重叠的图像块,然后每个图像块分开处理.然而,这些方法丢失了信号的重要空间结构,且忽略了对MR图像有强大约束的像素一致性.在文章中我们提出了一种新型的重建方法,这种方法是将最近提出的卷积稀疏编码与梯度域结合起来用于解决上述所提到的问题.不同于基于图像块状的方法,本文提出的算法是直接在整个梯度域图像中获取相邻局部的相关性,利用梯度域图像的全局相关性产生更好的梯度域图像边缘,锐利特征.提出的算法也能够高效的获取暗含在梯度域图像中的局部特征.与对比算法相比,大量的实验结果表明本文算法具有更好的质量重建,且在不同采样方案,不同K-空间加速因子情况下具有更快速的收敛.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号