首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用体渲染进行的快速全局照明   总被引:2,自引:1,他引:2  
提出了一种基于体渲染的快速全局照明方法,用于实时计算复杂的直接照明和间接照明。该方法使用一系列预先计算的图像数据来表示照明在特定空间中的分布,在实时渲染时通过对这些空间数据的重组来得到给定位置处的光强。计算过程分为预处理和实时渲染两部分:首先,针对每一个物体计算出该物体对周围空间辐照度的影响,并存储在体数据结构中;然后,在实时渲染过程中,利用已有的体数据重建出给定点的辐照度,实现照明。该方法可以计算任意形式的光源照明以及间接漫射。  相似文献   

2.
孙鑫  周昆  石教英 《软件学报》2008,19(4):1004-1015
现有的基于预计算的全局光照明绘制算法都假设场景中物体的材质固定不变,这样,从入射光照到出射的辐射亮度之间的传输变换就是线性变换.通过对这种线性变换的预计算,可以在动态光源下实现全局光照明的实时绘制.但是,当材质可以改变时,这种线性变换不再成立,因此,现有算法无法直接用于动态材质的场景.提出了一种方法:在修改场景中的物体材质时,可以实时得到场景在直接光照和间接光照下的绘制效果.将最终到达视点的辐射亮度根据其之前经过的反射次数及相应的反射材质分为多个部分,每个部分和先后反射的材质的乘积成正比,从而把该非线性问题转化为线性问题.又将所有可选的材质都表示为一组基的线性组合.将这组基作为材质赋予场景中的物体,就有各种不同的组合方式,预计算每种组合下所有部分的出射辐射亮度.在绘制时,根据各物体材质投影到基上的系数线性组合预计算的数据就能实时得到最终的全局光照明的绘制结果.该方法适用于几何场景、光照和视点都不发生变化的场景.使用双向反射分布函数来表示物体的材质,不考虑折射或者半透明的情况.该实现最多包含两次反射,并可以实时绘制得到一些很有趣的全局光照明效果,比如渗色、焦散等等.  相似文献   

3.
We propose a novel rendering method which supports interactive BRDF editing as well as relighting on a 3D scene. For interactive BRDF editing, we linearize an analytic BRDF model with basis BRDFs obtained from a principal component analysis. For each basis BRDF, the radiance transfer is precomputed and stored in vector form. In rendering time, illumination of a point is computed by multiplying the radiance transfer vectors of the basis BRDFs by the incoming radiance from gather samples and then linearly combining the results weighted by user‐controlled parameters. To improve the level of accuracy, a set of sub‐area samples associated with a gather sample refines the glossy reflection of the geometric details without increasing the precomputation time. We demonstrate this program with a number of examples to verify the real‐time performance of relighting and BRDF editing on 3D scenes with complex lighting and geometry.  相似文献   

4.
Radiance caching for efficient global illumination computation   总被引:1,自引:0,他引:1  
In this paper, we present a ray tracing-based method for accelerated global illumination computation in scenes with low-frequency glossy BRDFs. The method is based on sparse sampling, caching, and interpolating radiance on glossy surfaces. In particular, we extend the irradiance caching scheme proposed by Ward et al. (1988) to cache and interpolate directional incoming radiance instead of irradiance. The incoming radiance at a point is represented by a vector of coefficients with respect to a hemispherical or spherical basis. The surfaces suitable for interpolation are selected automatically according to the roughness of their BRDF. We also propose a novel method for computing translational radiance gradient at a point.  相似文献   

5.
We investigate the representation of signals defined on triangle meshes using linearly interpolated vertex attributes. Compared to texture mapping, storing data only at vertices yields significantly lower memory overhead and less expensive runtime reconstruction. However, standard approaches to determine vertex values such as point sampling or averaging triangle samples lead to suboptimal approximations. We discuss how an optimal solution can be efficiently calculated using continuous least‐squares. In addition, we propose a regularization term that allows us to minimize gradient discontinuities and mach banding artifacts while staying close to the optimum. Our method has been integrated in a game production lighting tool and we present examples of representing signals such as ambient occlusion and precomputed radiance transfer in real game scenes, where vertex baking was used to free up resources for other game components.  相似文献   

6.
This paper presents a rendering method for translucent objects, in which viewpoint and illumination can be modified at interactive rates. In a preprocessing step, the impulse response to incoming light impinging at each surface point is computed and stored in two different ways: The local effect on close‐by surface points is modeled as a per‐texel filter kernel that is applied to a texture map representing the incident illumination. The global response (i.e. light shining through the object) is stored as vertex‐to‐vertex throughput factors for the triangle mesh of the object. During rendering, the illumination map for the object is computed according to the current lighting situation and then filtered by the precomputed kernels. The illumination map is also used to derive the incident illumination on the vertices which is distributed via the vertex‐to‐vertex throughput factors to the other vertices. The final image is obtained by combining the local and global response. We demonstrate the performance of our method for several models. ACM CSS: I.3.7 Computer Graphics—Three‐Dimensional Graphics and Realism Color Radiosity  相似文献   

7.
光辐射传输预计算对于提高场景绘制效果很关键。对光辐射传输预计算进行了研究,提出了一种基于SH的光辐射传输预计算的算法,在低频环境光照条件下实时生成漫反射物体。将光源分布函数和光辐射传输函数分别用SH进行分解,则出射光强为两者生成的系数向量点积。绘制的场景中包含了阴影,相互反射等全局光照效果。实验结果表明算法逼近程度好,绘制质量高,具有一定的实用价值。  相似文献   

8.
We present a real‐time rendering algorithm for inhomogeneous, single scattering media, where all‐frequency shading effects such as glows, light shafts, and volumetric shadows can all be captured. The algorithm first computes source radiance at a small number of sample points in the medium, then interpolates these values at other points in the volume using a gradient‐based scheme that is efficiently applied by sample splatting. The sample points are dynamically determined based on a recursive sample splitting procedure that adapts the number and locations of sample points for accurate and efficient reproduction of shading variations in the medium. The entire pipeline can be easily implemented on the GPU to achieve real‐time performance for dynamic lighting and scenes. Rendering results of our method are shown to be comparable to those from ray tracing.  相似文献   

9.
Computing global illumination in complex scenes is even with todays computational power a demanding task. In this work we propose a novel irradiance caching scheme that combines the advantages of two state-of-the-art algorithms for high-quality global illumination rendering: lightcuts , an adaptive and hierarchical instant-radiosity based algorithm and the widely used (ir)radiance caching algorithm for sparse sampling and interpolation of (ir)radiance in object space. Our adaptive radiance caching algorithm is based on anisotropic cache splatting, which adapts the cache footprints not only to the magnitude of the illumination gradient computed with light-cuts but also to its orientation allowing larger interpolation errors along the direction of coherent illumination while reducing the error along the illumination gradient. Since lightcuts computes the direct and indirect lighting seamlessly, we use a two-layer radiance cache, to store and control the interpolation of direct and indirect lighting individually with different error criteria. In multiple iterations our method detects cache interpolation errors above the visibility threshold of a pixel and reduces the anisotropic cache footprints accordingly. We achieve significantly better image quality while also speeding up the computation costs by one to two orders of magnitude with respect to the well-known photon mapping with (ir)radiance caching procedure.  相似文献   

10.
A rendering system for interior scenes is proposed in this paper. The light reaches the interior scene, usually through small regions, such as windows or abat‐jours, which we call portals. To provide a solution, suitable for rendering interior scenes with portals, we extend the traditional precomputed radiance transfer approaches. In our approach, a bounding sphere, which we call a shell, of the interior, centered at each portal, is created and the light transferred from the shell towards the interior through the portal is precomputed. Each shell acts as an environment light source and its intensity distribution is determined by rendering images of the scene, viewed from the center of the shell. By updating the intensity distribution of the shell at each frame, we are able to handle dynamic objects outside the shells. The material of the portals can also be modified at run time (e.g. changing from transparent glass to frosted glass). Several applications are shown, including the illumination of a cathedral, lit by skylight at different times of a day, and a car, running in a town, at interactive frame rates, with a dynamic viewpoint.  相似文献   

11.
We introduce MesoGAN, a model for generative 3D neural textures. This new graphics primitive represents mesoscale appearance by combining the strengths of generative adversarial networks (StyleGAN) and volumetric neural field rendering. The primitive can be applied to surfaces as a neural reflectance shell; a thin volumetric layer above the surface with appearance parameters defined by a neural network. To construct the neural shell, we first generate a 2D feature texture using StyleGAN with carefully randomized Fourier features to support arbitrarily sized textures without repeating artefacts. We augment the 2D feature texture with a learned height feature, which aids the neural field renderer in producing volumetric parameters from the 2D texture. To facilitate filtering, and to enable end-to-end training within memory constraints of current hardware, we utilize a hierarchical texturing approach and train our model on multi-scale synthetic datasets of 3D mesoscale structures. We propose one possible approach for conditioning MesoGAN on artistic parameters (e.g. fibre length, density of strands, lighting direction) and demonstrate and discuss integration into physically based renderers.  相似文献   

12.
Interactive relighting of panoramas   总被引:1,自引:0,他引:1  
We have developed an interactive image-based panorama viewer that incorporates illumination information for re-lighting. Our panoramic image representation lets users incorporate the illumination information into the panorama and to interactively adjust the lighting conditions. We propose a concept of an apparent pixel bidirectional reflectance distribution function (pBRDF) to represent the outgoing radiance distribution passing through the pixel window on the image plane. By treating each image pixel as an ordinary surface element, we can record its radiance distribution under various illumination conditions in a table. If we incorporate this table into the panoramic image data structure, we can re-light the image. Our interactive panorama viewer allows panning, tilting and zooming, as well as modifying the modeled environment's lighting conditions  相似文献   

13.
In many remote sensing and machine vision applications, the shape of a specular surface such as water, glass, or polished metal must be determined instantaneously and under natural lighting conditions. Most image analysis techniques, however, assume surface reflectance properties or lighting conditions that are incompatible with these situations. To retrieve the shape of smooth specular surfaces, a technique known as specular surface stereo was developed. The method analyzes multiple images of a surface and finds a surface shape that results in a set of synthetic images that match the observed ones. An image synthesis model is used to predict image irradiance values as a function of the shape and reflectance properties of the surface, camera geometry, and radiance distribution of the illumination. The specular surface stereo technique was tested by processing four numerical simulations-a water surface illuminated by a low- and high-contrast extended light source, and a mirrored surface illuminated by a low- and high-contrast extended light source. Under these controlled circumstances, the recovered surface shape showed good agreement with the known input  相似文献   

14.
This paper introduces a caching technique based on a volumetric representation that captures low-frequency indirect illumination. This structure is intended for efficient storage and manipulation of illumination. It is based on a 3D grid that stores a fixed set of irradiance vectors. During preprocessing, this representation can be built using almost any existing global illumination software. During rendering, the indirect illumination within a voxel is interpolated from its associated irradiance vectors, and is used as additional local light sources. Compared with other techniques, the 3D vector-based representation of our technique offers increased robustness against local geometric variations of a scene. We thus demonstrate that it may be employed as an efficient and high-quality caching data structure for bidirectional rendering techniques such as particle tracing or photon mapping.  相似文献   

15.
为了实现动态场景下的局部光源照明,本文提出一种叫做软阴影的技术.这种技术的主要思想是预先计算每一个场景实体的阴影区域,描述实体在某点处的阴影效果.光源的阴影域称为源辐射度域,它记录了一个光源采用立方体采样向外发射的辐射图.本文提供的技术与其它软阴影生成技术有一个根本的区别:预先计算与场景结构完全独立开来.本文所提供的技术可以使实时的动态场景中产生低频的阴影效果,也能产生全频阴影.  相似文献   

16.
提出一种基于蒙特卡洛积分,利用半球谐函数对光滑平面进行的快速全局照明计算方法。该方法通过在光滑平面上的辐亮度进行取样,然后把其放进高速缓存器中,经过计算再对其它点进行插值。为了提高计算速度,物体表面的入射辐亮度被半球谐化,并且物体表面的双向反射率分布函数也被定义成两个半球面上的笛卡儿积。插值时,利用梯度方向插值,并且用了一种简便的方法来计算一个点的梯度。该方法能极大提高了全局照明的计算速度。这对于照明工程、高质量的动画制作及虚拟现实等领域都具有非常广阔的应用前景。  相似文献   

17.
18.
Lighting networks combine different global illumination algorithms in a composite lighting simulation and allow for restricting costly lighting effects to important parts of the scene. In the lighting networks approach, each lighting algorithm is considered a lighting operator or LightOp. Each LightOp takes illumination information as input and generates new illumination information as output after having simulated part of the global lighting effects in the scene. We motivate the use of LightOps from the formal solution of the radiance equation. We then demonstrate how these LightOps can easily combine into a lighting network, representing a composite lighting simulation  相似文献   

19.
Many interesting real‐world textures are inhomogeneous and/or anisotropic. An inhomogeneous texture is one where various visual properties exhibit significant changes across the texture's spatial domain. Examples include perceptible changes in surface color, lighting, local texture pattern and/or its apparent scale, and weathering effects, which may vary abruptly, or in a continuous fashion. An anisotropic texture is one where the local patterns exhibit a preferred orientation, which also may vary across the spatial domain. While many example‐based texture synthesis methods can be highly effective when synthesizing uniform (stationary) isotropic textures, synthesizing highly non‐uniform textures, or ones with spatially varying orientation, is a considerably more challenging task, which so far has remained underexplored. In this paper, we propose a new method for automatic analysis and controlled synthesis of such textures. Given an input texture exemplar, our method generates a source guidance map comprising: (i) a scalar progression channel that attempts to capture the low frequency spatial changes in color, lighting, and local pattern combined, and (ii) a direction field that captures the local dominant orientation of the texture. Having augmented the texture exemplar with this guidance map, users can exercise better control over the synthesized result by providing easily specified target guidance maps, which are used to constrain the synthesis process.  相似文献   

20.
Radiance caching methods have proven to be efficient for global illumination. Their goal is to compute precisely illumination values (incident radiance or irradiance) at a reasonable number of points lying on the scene surfaces. These points, called records, are stored in a cache used for estimating illumination at other points in the scene. Unfortunately, with records lying on glossy surfaces, the irradiance value alone is not sufficient to evaluate the reflected radiance; each record should also store the incident radiance for all incident directions. Memory storage can be reduced with projection techniques using spherical harmonics or other basis functions. These techniques provide good results for low shininess BRDFs. However, they get impractical for shininess of even moderate value, since the number of projection coefficients increases drastically. In this paper, we propose a new radiance caching method that handles highly glossy surfaces while requiring a low memory storage. Each cache record stores a coarse representation of the incident illumination thanks to a new data structure, called Equivalent Area light Sources, capable of handling fuzzy mirror surfaces. In addition, our method proposes a new simplification of the interpolation process, since it avoids the need for expressing and evaluating complex gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号