首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 609 毫秒

1.  基于边缘统计和颜色特征的车牌综合自动定位方法  被引次数:4
   李树广  吴舟舟  罗小伟《山东大学学报(工学版)》,2005年第35卷第3期
   车牌识别在智能交通系统中起着重要作用.车牌定位是车牌识别中的关键步骤.本文提出一种基于车牌字符边缘统计和颜色特征的综合定位方法,可以有效地解决背景复杂的彩色图像中车牌定位的问题.该方法分为竖直边缘检测、边缘统计分析、车牌候选区定位、候选区筛选、车牌倾斜矫正.通过对垂直边缘的统计分析将邻近的边缘点进行连接,结合车牌的位置、颜色等特征对连接形成的块状区域进行筛选,而后对得到的车牌区域加以校正,最终输出易于分割的车牌字符图像.该系统包括从图像采集,到车牌分类、车牌文字区别等完整过程,适应性强.通过一系列实际采样图像的试验结果证明,该方法准确率高、鲁棒性好,能够满足实际车辆车牌自动识别系统应用的需要.    

2.  基于边缘统计和颜色特征的车牌综合自动定位方法  
   李树广 吴舟舟 罗小伟《山东工业大学学报》,2005年第35卷第3期
   车牌识别在智能交通系统中起着重要作用,车牌定位是车牌识别中的关键步骤.本文提出一种基于车牌字符边缘统计和颜色特征的综合定位方法,可以有效地解决背景复杂的彩色图像中车牌定位的问题,该方法分为竖直边缘检测、边缘统计分析、车牌候选区定位、候选区筛选、车牌倾斜矫正,通过对垂直边缘的统计分析将邻近的边缘点进行连接,结合车牌的位置、颜色等特征对连接形成的块状区域进行筛选,而后对得到的车牌区域加以校正,最终输出易于分割的车牌字符图像.该系统包括从图像采集,到车牌分类、车牌文字区别等完整过程,适应性强.通过一系列实际采样图像的试验结果证明,该方法准确率高、鲁棒性好,能够满足实际车辆车牌自动识别系统应用的需要。    

3.  基于彩色边缘检测及综合特征的车牌定位算法  
   苗春艳  杨耀权《电子世界》,2013年第16期
   针对车牌区域难以定位的问题,本文提出了一种基于彩色边缘检测及综合特征的车牌定位方法。该算法利用车牌底色与字符颜色有几种固定搭配的特点,对彩色图像进行边缘提取,然后利用车牌区域的结构与纹理特征定位车牌,有效减少了车牌大小、位置以及背景复杂等方面的限制。实验证明该算法耗时少,准确率高,鲁棒性好。    

4.  自然背景下车牌定位算法研究  
   付希金  林和平《信息技术》,2008年第32卷第7期
   提出一种综合边缘检测、形态学、扫描行法的车牌定位算法,该方法利用边缘检测获取车牌区域垂直边缘,利用形态学运算得到车牌候选区域,最后结合车牌特征,采用双扫描行法定位车牌,解决了自然背景中车牌定位困难的问题.实验表明,该算法定位准确,鲁棒性强,适用于多车牌情况.    

5.  复杂背景下的混合特征车牌定位方法  
   陈伟《现代计算机》,2011年第15期
   针对各种复杂背景的车牌定位问题,提出一种复杂背景下基于车牌混合特征的车牌定位算法。首先对彩色图像进行预处理,并利用基于边缘检测方法进行二值化;然后结合横向数学形态学运算和车牌几何形状特征,提取出矩形车牌候选区域;最后根据车牌颜色特征在HIS空间下结合垂直和水平投影对车牌区域进行精确定位。实验表明,该算法适用于任意大小、位置和背景环境下的车牌定位,能有效解决仅仅依靠纹理信息或颜色信息车牌定位率低的问题,具有较强的鲁棒性。    

6.  基于多类别特征信息融合的车牌检测  
   张勇  宁蒙  牛常勇《计算机工程与设计》,2015年第36卷第1期
   自然场景下复杂多变的影响因素给车牌检测带来困难,为检测并定位自然场景下移动车辆的车牌区域,通过分析信息融合和多类特征提取的特点,提出基于多类别特征信息融合的车牌检测方法.该算法在两种不同场景数据集上的测试效果验证了信息融合和多类特征提取能显著提高车牌检测的检测率和场景鲁棒性.    

7.  复杂车辆图像中的车牌定位  
   喻晓  李慕龙  张礽婧  周晓思《电子设计工程》,2010年第18卷第12期
   针对复杂背景的车牌定位问题,提出了一种综合形态、颜色、投影等多种特征的车牌定位算法.基于车牌区域边缘信息丰富的特点,首先利用边缘检测和数学形态学方法定位候选车牌区域,并消除噪声干扰;然后根据质心所在位置对候选区域进行由低到高的排序,并通过颜色识别作进一步筛选,以排除车灯等区域的干扰;最后采用投影法及谷值分析对截取出的缺损车牌进行补全,从而得到准确的车牌位置.实验结果表明,算法的效率与精度与车辆图像的清晰度、曝光度及车牌大小等因素有关,与传统车牌定位算法相比,效率和精度分别提高了15%和20%以上.    

8.  一种梯度特征与区域合并的车牌定位方法  
   潘巍  刘宏宇  安荣  杨娜菲  黄亦佳《计算机工程与应用》,2011年第47卷第18期
   车牌定位是车牌识别系统的重要组成部分。针对车牌目标所在区域梯度变换频繁的特点,利用高通滤波保留梯度变换频繁区域,形态学处理后,将相邻区域进行合并以确定车牌的候选区域。再结合车牌的几何特征与区域目标背景比,找到车牌位置,利用投影方法去除车牌边框,实现车牌的精确定位。实验结果表明,该方法削弱了传统车牌定位算法对车辆大小、图像环境、拍摄角度等的要求,进一步提高了算法的鲁棒性和实用性。    

9.  基于多尺度小波边缘检测的车牌定位研究  
   张吉斌《电视技术》,2013年第37卷第7期
   车辆牌照的准确定位是车牌识别系统中的关键步骤,利用车牌区域丰富的边缘和纹理信息以及车牌自身的特征,提出一种基于多尺度小波边缘检测的车牌定位方法.该方法能够更好地解决在复杂背景和复杂光照下的车牌定位.首先用图像增强和多尺度小波算子提取出车牌图像的边缘,然后利用数学形态学和连通区域标记的方法对车牌进行初步特征提取去除伪车牌区域,最后采用水平垂直投影法进行车牌的精确定位.实验结果表明,该方法能够实现车牌的快速准确定位,对复杂背景下的车牌具有很好的鲁棒性和实时性.    

10.  基于联合HOG特征的车牌识别算法  
   殷羽  郑宏  高婷婷  刘操《计算机工程与设计》,2015年第2期
   为解决车牌中汉字识别未考虑汉字结构特征的问题,提出联合方向梯度直方图特征(HOG)结合支持向量机(SVM)的车牌识别算法。将灰度图、二值图、16值图的HOG特征在一定的权重下融合为联合HOG特征,使用核主成分分析法(KPCA)对联合HOG特征进行降维;对汉字和数字字母分别利用支持向量机进行分类,利用交叉验证方法对参数进行优化,得到最优预测模型;利用预测模型预测识别结果。实验结果表明,相对于传统车牌识别算法,该算法可以应用于复杂环境下的车牌字符识别,车牌识别率提高了10%左右,鲁棒性强且便于硬件实现。    

11.  基于边缘颜色对的车牌定位新方法  被引次数:46
   李文举  梁德群  张旗  樊鑫《计算机学报》,2004年第27卷第2期
   车牌定位是车牌自动识别系统中的一个关键问题.该文提出了一种新的基于边缘颜色对的车牌定位方法.首先进行彩色边缘检测,然后以每一边缘点为中心,垂直于边缘方向取一线形窗口,在窗口内检测边缘点两侧像素的颜色是否分别匹配车牌的底色与字符颜色,若是,则保留为候选车牌边缘点;然后进行形态滤波,剥离不符合车牌结构特征的区域,最后对候选车牌区域进行纹理特征的分析以确定真实车牌区域.该方法抓住了车牌背景与字符具有固定颜色搭配的重要特点,综合利用了车牌的结构特征和纹理特征,提高了车牌定位的可靠性.对各种条件下拍摄的163幅含有车牌的图像应用该算法,定位准确率达到98.2%。    

12.  基于边缘颜色分布的车牌定位新方法  
   黄豪杰  李榕  常鸿森  李南希《四川激光》,2007年第28卷第3期
   根据车牌的综合特征,提出了一种新的基于边缘颜色分布的车牌定位算法.该算法抓住了车牌背景与字符具有固定颜色搭配的重要特点,利用车牌区域内特有的边缘颜色分布信息并结合车牌的纹理特征,有效地滤除了大量的背景和噪声边缘,然后利用车牌的结构特征和边缘信息,并结合形态滤波的方法,以进一步确定车牌区域.实验结果表明,该算法定位准确率高、鲁棒性好,而且适用于对复杂背景下的多车牌图像进行分割.    

13.  基于数学形态学车牌定位算法仿真研究  
   廖春生《计算机仿真》,2011年第28卷第12期
   研究车牌准确定位识别的问题,交通流量在高速条件下识别系统采集信息与数据有差异,同时在复杂背景中由于车牌的纹理区域面积太小造成车牌定位困难,传统的识别算法由于模板以及方向的选择困难,造成文字的识别率低的等问题.为解决上述问题,提出了一种利用数学形态学操作提取车牌和基于神经网络算法的车牌文字识别技术.首先将汽车图像进行边缘提取处理,提取候选区域,依据各个候选区域特性,进行形态学操作,从而可提取车牌图像,同时利用神经网络对车牌图像中的文字进行识别.实验结果显示改进的方法快速有效地提取车牌图像的边缘信息,所提取的车牌图像与真实车牌的位置吻合,提出的改进方法为车牌识别提供了参考.    

14.  基于四元数特定颜色对边缘检测的车牌定位  
   王建  刘立  王天慧《计算机应用》,2011年第31卷第3期
   车牌定位是车牌识别系统中的一个关键问题。提出了一种基于四元数特定颜色对边缘检测的车牌定位算法。首先将输入彩色图像用同色调全饱和度四元数形式表示;然后借助四对模板检测特定颜色对边缘,结合形态学膨胀运算提取潜在车牌区域;最后根据车牌形状约束条件定位车牌区域。该方法综合利用了车牌的颜色、边缘和形状特征,具有较好的鲁棒性。对各种情况拍摄的485幅车牌图像应用该算法,查全率达到96.8%,查准率超过93.2%。    

15.  一种基于彩色纹理特征的车牌定位方法  
   王明华《佳木斯工学院学报》,2014年第1期
   准确快速的车牌定位是汽车牌照自动识别系统的一个重要环节.利用Roberts算子对车牌图像进行边缘检测,根据车牌的彩色纹理特征和灰度跳变特征,提出了一种基于彩色纹理特征的车牌定位新方法,利用采集的80幅车牌图像,在MATLAB环境下进行车牌定位实验,定位准确率达92.5%,实验结果验证了该算法的有效性和鲁棒性.    

16.  基于形态学梯度重建的车牌定位方法  
   曹岩《计算机工程与科学》,2015年第37卷第7期
   准确定位车牌是车牌识别的重要基础.针对复杂环境下车牌图像容易受背景、光照等因素的影响而导致车牌定位精度较低的问题,提出了一种基于形态学梯度重建的车牌定位方法.该方法首先利用颜色信息确定车牌候选区域;然后利用矢量梯度算子获取候选区域中车牌图像的梯度,利用形态学梯度重建运算提取具有车牌特征的图像结构,同时抑制非车牌特征的图像结构;最后利用车牌固定的宽长比先验信息对矩形区域进行提取,最终得到准确的车牌定位结果.实验结果表明,提出的车牌定位方法能在复杂环境下快速、准确地定位车牌,且具有较高的鲁棒性和实时性.    

17.  基于数学形态学和Hough变换的车牌定位算法  被引次数:1
   李莹  李守荣  孙震《微型机与应用》,2011年第30卷第19期
   针对复杂环境下的车牌定位率较低的问题,提出了一种基于数学形态学和Hough变换检测车牌区域的方法。首先,对车牌图像进行图像预处理,然后,利用数学形态学的高帽变换突出车牌字符区域,并对图像进行边缘检测和连通区域分析;最后,结合Hough变换和车牌的先验知识实现车牌的精确定位。实验结果表明,针对不同复杂背景下采集到的车辆图像,该算法具有很强的鲁棒性,准确率达97.3%,能够满足现代智能交通系统对车牌定位准确性和实时性的要求。    

18.  基于边缘检测和形态学的车牌定位算法  
   廖晓姣  李英《现代电子技术》,2011年第34卷第10期
   针对车牌自动识别系统的车牌定位方法进行了研究分析,提出一种结合边缘检测和数学形态学的车牌定位算法。利用边缘检测和形态学分析得到车牌候选区域,对候选区域进行连通域分析,实现了对车牌区域的定位。实验结果表明,该方法降低了各种背景噪声对图像中目标区域判别的影响,降低了车牌定位时间,有效地实现了车牌定位。    

19.  基于边缘颜色对特征及笔画穿越双层检测车牌定位算法  
   胡正平  曹兵兵《东北重型机械学院学报》,2012年第1期
   针对现有车牌定位算法鲁棒性不够、准确度不高以及参数设置困难等问题,提出基于边缘颜色对特征以及笔画穿越双层检测车牌定位算法,不但充分利用车牌边缘颜色搭配信息,而且有效利用了车牌字符结构信息。粗检测阶段:首先进行边缘检测,人工收集所有搭配的彩色边缘特征数据,利用机器学习模型建立车牌边缘颜色对覆盖分类学习模型,然后利用车牌边缘颜色对覆盖分类学习模型,并利用先验信息进行形态学处理形成车牌候选区域。验证阶段:针对粗检测车牌候选区域,扫描车牌边缘穿越信息,最后利用车牌区域整体边缘分布覆盖分类模型进行候选区域验证处理。该方法利用车牌背景与字符具有固定颜色搭配的重要特点,综合利用了车牌的结构特征和纹理特征,提高了车牌定位的可靠性。实验采用100幅含有不同颜色搭配的车牌图像进行实验,定位准确率达到96%以上。    

20.  利用综合特征的车牌定位方法  
   李文举  韦丽华  王洪东  朱正强《小型微型计算机系统》,2011年第32卷第8期
   车牌定位是车牌识别系统的关键技术之一.提出利用结构特征、纹理特征和颜色特征的车牌定位新方法.首先,利用顶帽变换抑制背景;其次,进行垂直边缘检测和形态滤波,通过结构特征进行车牌粗定位;再次,对候选区域的垂直投影应用一维小波分解滤噪,然后重构垂直投影,计算纹理统计量并构造纹理特征向量,应用BP神经网络识别车牌的字符纹理进行车牌的再定位;最后,对候选区域进行基于边缘颜色对的彩色边缘检测,根据其水平投影值进行车牌的精定位.对各种条件下拍摄的314幅含有车牌的车辆图像应用本算法,定位准确率达到98.7%.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号