首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
针对传统K—means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K—means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这足对高密度点的均值作为聚类的初始中心,再进行K—means聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。  相似文献   

2.
针对K-均值聚类算法对初始聚类中心存在依赖性的缺陷,提出一种基于数据空间分布选取初始聚类中心的改进算法.该算法首先定义样本距离、样本平均差异度和样本集总体平均差异度;然后将每个样本按平均差异度排序,选择平均差异度较大且与已选聚类中心的差异度大于样本集总体平均差异度的样本作为初始聚类中心.实验表明,改进后的算法不仅提高了聚类结果的稳定性和正确率,而且迭代次数明显减少,收敛速度快.  相似文献   

3.
针对K‐means算法随机选择初始聚类中心所出现的样本聚类结果随机性强、稳定性低、容易陷入局部最优和得不到全局最优解等问题,提出一种基于均值与最大距离乘积的初始聚类中心优化K‐means算法。该算法首先选择距离样本集均值最远的数据对象加入聚类中心集合,再依次将与样本集均值和当前聚类中心乘积最大的数据对象加入聚类中心集合。标准数据集上的实验结果表明,与原始K‐means的算法以及另一种改进算法相比,新提出的聚类算法具有更高的准确率。  相似文献   

4.
摘 要 针对传统K-Means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题。结合密度法和最大化最小距离的思想,本文提出基于最近高密度点间的垂直中心点优化初始聚类中心的K-Means聚类算法,该算法首先选取相互间距离最大的K对高密度点,并以这K对高密度点的均值作为聚类的初始中心,然后再进行K-Means聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。  相似文献   

5.
为了更好地评价无监督聚类算法的聚类质量,解决因簇中心重叠而导致的聚类评价结果失效等问题,对常用聚类评价指标进行了分析,提出一个新的内部评价指标,将簇间邻近边界点的最小距离平方和与簇内样本个数的乘积作为整个样本集的分离度,平衡了簇间分离度与簇内紧致度的关系;提出一种新的密度计算方法,将样本集与各样本的平均距离比值较大的对象作为高密度点,使用最大乘积法选取相对分散且具有较高密度的数据对象作为初始聚类中心,增强了K-medoids算法初始中心点的代表性和算法的稳定性,在此基础上,结合新提出的内部评价指标设计了聚类质量评价模型,在UCI和KDD CUP 99数据集上的实验结果表明,新模型能够对无先验知识样本进行有效聚类和合理评价,能够给出最优聚类数目或最优聚类范围.  相似文献   

6.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

7.
现有的基于密度优化初始聚类中心的k-means算法存在聚类中心的搜索范围大、消耗时间久以及聚类结果对孤立点敏感等问题,针对这些问题,提出了一种基于平均密度优化初始聚类中心的k-means算法adk-means。该算法将数据集中的孤立点划分出来,计算出剩余数据集样本的平均密度,孤立点不参与聚类过程中各类所含样本均值的计算;在大于平均密度的密度参数集合中选择聚类中心,根据最小距离原则将孤立点分配给离它最近的聚类中心,直至将数据集完整分类。实验结果表明,这种基于平均密度优化初始聚类中心的k-means算法比现有的基于密度的k-means算法有更快的收敛速度,更强的稳定性及更高的聚类精度,消除了聚类结果对孤立点的敏感性。  相似文献   

8.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

9.
针对快速K-medoids聚类算法和方差优化初始中心的K-medoids聚类算法存在需要人为给定类簇数,初始聚类中心可能位于同一类簇,或无法完全确定数据集初始类簇中心等缺陷,受密度峰值聚类算法启发,提出了两种自适应确定类簇数的K-medoids算法。算法采用样本x i的t最近邻距离之和倒数度量其局部密度ρi,并定义样本x i的新距离δi,构造样本距离相对于样本密度的决策图。局部密度较高且相距较远的样本位于决策图的右上角区域,且远离数据集的大部分样本。选择这些样本作为初始聚类中心,使得初始聚类中心位于不同类簇,并自动得到数据集类簇数。为进一步优化聚类结果,提出采用类内距离与类间距离之比作为聚类准则函数。在UCI数据集和人工模拟数据集上进行了实验测试,并对初始聚类中心、迭代次数、聚类时间、Rand指数、Jaccard系数、Adjusted Rand index和聚类准确率等经典聚类有效性评价指标进行了比较,结果表明提出的K-medoids算法能有效识别数据集的真实类簇数和合理初始类簇中心,减少聚类迭代次数,缩短聚类时间,提高聚类准确率,并对噪音数据具有很好的鲁棒性。  相似文献   

10.
随机选取初始聚类中心和根据经验设置[K]值对[K]-means聚类结果都有一定的影响,针对这一问题,提出了一种基于加权密度和最大最小距离的[K]-means聚类算法,称为[KWDM]算法。该算法利用加权密度法选取初始聚类中心点集,减少了离群点对聚类结果的影响,通过最大最小距离准则启发式地选择聚类中心,避免了聚类结果陷入局部最优,最后使用准则函数即簇内距离和簇间距离的比值来确定[K]值,防止了根据经验来设置[K]值。在人工数据集和UCI数据集上的实验结果表明,KWDM算法不仅提高了聚类的准确率,而且减少了算法的平均迭代次数,增强了算法的稳定性。  相似文献   

11.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

12.
基于密度的改进K均值算法及实现   总被引:4,自引:1,他引:3  
傅德胜  周辰 《计算机应用》2011,31(2):432-434
传统的K均值算法的初始聚类中心从数据集中随机产生,聚类结果很不稳定。提出一种基于密度算法优化初始聚类中心的改进K-means算法,该算法选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验证明,改进的K-means算法能够消除对初始聚类中心的依赖,聚类结果有了较大的改进。  相似文献   

13.
为了提高K-medoids算法的精度和稳定性,并解决K-medoids算法的聚类数目需要人工给定和对初始聚类中心点敏感的问题,提出了基于密度权重Canopy的改进K-medoids算法。该算法首先计算数据集中每个样本点的密度值,选择密度值最大的样本点作为第1个聚类中心,并从数据集中删除这个密度簇;然后通过计算剩下样本点的权重,选择出其他聚类中心;最后将密度权重Canopy作为K-medoids的预处理过程,其结果作为K-medoids算法的聚类数目和初始聚类中心。UCI真实数据集和人工模拟数据集上的仿真实验表明,该算法具有较高的精度和较好的稳定性。  相似文献   

14.
王治和  王淑艳  杜辉 《计算机工程》2021,47(5):88-96,103
模糊C均值(FCM)聚类算法无法识别非凸数据,算法中基于欧式距离的相似性度量只考虑数据点之间的局部一致性特征而忽略了全局一致性特征。提出一种利用密度敏感距离度量创建相似度矩阵的FCM算法。通过近邻传播算法获取粗类数作为最佳聚类数的搜索范围上限,以解决FCM算法聚类数目需要人为预先设定和随机选定初始聚类中心造成聚类结果不稳定的问题。在此基础上,改进最大最小距离算法,得到具有代表性的样本点作为初始聚类中心,并结合轮廓系数自动确定最佳聚类数。基于UCI数据集和人工数据集的实验结果表明,相比经典FCM、K-means和CFSFDP算法,该算法不仅具有识别复杂非凸数据的能力,而且能够在保证聚类性能和稳定性的前提下加快收敛速度。  相似文献   

15.
一种基于大密度区域的模糊聚类算法   总被引:1,自引:0,他引:1  
针对模糊C-均值(FCM)算法对初始聚类中心和噪声数据敏感的缺陷,提出一种基于大密度区域的模糊聚类算法.该算法首先利用大密度区域以及样本的密度值变化方法,选取初始聚类中心以及候选初始聚类中心,并依据初始聚类中心与候选初始聚类中心的距离,确定初始聚类中心点,从而有效的克服了随机给定初始聚类中心容易使算法收敛到局部极小的缺陷;其次,分别利用密度函数为样本加权和引用改进的隶属度函数进行优化,有效地提高了模糊聚类的抗噪性;最后实验验证了算法在初始聚类中心的确定,聚类效果和抗噪性方面具有良好的效果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号