首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对象式逻辑程序设计语言LKO的说明性语义   总被引:2,自引:0,他引:2  
徐殿祥  关国梁 《计算机学报》1996,19(11):841-847
本文基于逻辑程序设计语言的良基模型语义,探讨了对象逻辑程序设计语言LKO的说明性语义,该语义由组合迭代的极小不动点定义,具有构造性和组合性,迷在LKO中进一步引入非单调继承和逻辑奠定了基础。  相似文献   

2.
3.
Imperfect information is a very general term that comprises different types of information, such as uncertain, vague, fuzzy, inconsistent, possibilistic, probabilistic, partially or totally incomplete information [2]. In the literature of knowledge representation we find a different formal model for each one of these distinct types. For example, annotated logic is a formal model to represent inconsistent information.Annotated logics are non-classical logics introduced in [20] as a logic programming theory. They were proved to be paraconsistent. Based on [5], we present in this work the annotated logic programming theory and some of its applications in Artificial Intelligence (AI). We present it as a formalism to reason with inconsistent information and investigate its possibility to represent other types of imperfect information, such as possibilistic and non-monotonic reasoning. Our main goal is to verify and confirm the importance of annotated logics as a tool for developing knowledge-based and automated reasoning systems in AI.  相似文献   

4.
In this paper we show how the concepts of answer set programming and fuzzy logic can be successfully combined into the single framework of fuzzy answer set programming (FASP). The framework offers the best of both worlds: from the answer set semantics, it inherits the truly declarative non-monotonic reasoning capabilities while, on the other hand, the notions from fuzzy logic in the framework allow it to step away from the sharp principles used in classical logic, e.g., that something is either completely true or completely false. As fuzzy logic gives the user great flexibility regarding the choice for the interpretation of the notions of negation, conjunction, disjunction and implication, the FASP framework is highly configurable and can, e.g., be tailored to any specific area of application. Finally, the presented framework turns out to be a proper extension of classical answer set programming, as we show, in contrast to other proposals in the literature, that there are only minor restrictions one has to demand on the fuzzy operations used, in order to be able to retrieve the classical semantics using FASP.  相似文献   

5.
《Artificial Intelligence》2007,171(16-17):939-950
In this paper we propose a new formalization of the inductive logic programming (ILP) problem for a better handling of exceptions. It is now encoded in first-order possibilistic logic. This allows us to handle exceptions by means of prioritized rules, thus taking lessons from non-monotonic reasoning. Indeed, in classical first-order logic, the exceptions of the rules that constitute a hypothesis accumulate and classifying an example in two different classes, even if one is the right one, is not correct. The possibilistic formalization provides a sound encoding of non-monotonic reasoning that copes with rules with exceptions and prevents an example to be classified in more than one class. The benefits of our approach with respect to the use of first-order decision lists are pointed out. The possibilistic logic view of ILP problem leads to an optimization problem at the algorithmic level. An algorithm based on simulated annealing that in one turn computes the set of rules together with their priority levels is proposed. The reported experiments show that the algorithm is competitive to standard ILP approaches on benchmark examples.  相似文献   

6.
This paper present an extension of traditional logic programming, called ordered logic (OL) programming, to support classical negation as well as constructs from the object-oriented paradigm. In particular, such an extension allows to cope with the notions of object, multiple inheritance and non-monotonic reasoning. The contribution of the work is mainly twofold. First, a rich wellfounded semantics for ordered logic programs is defined. Second, an efficient method for the well-founded model computation of a meaningful class of ordered logic programs, called stratified programs, is provided.  相似文献   

7.
本文以耶鲁枪击问题为例,分析了典型的非单调理论在解决框架问题上的局限性;在综述了已有的解决方案所存在的问题后,指出了非单调的推理与逻辑程序设计系统GKD—NMRS在描述和解决框架问题上的简洁性和直观性。  相似文献   

8.
Answer set programming is a declarative programming paradigm rooted in logic programming and non-monotonic reasoning. This formalism has become a host for expressing knowledge representation problems, which reinforces the interest in efficient methods for computing answer sets of a logic program. The complexity of various reasoning tasks for general answer set programming has been amply studied and is understood quite well. In this paper, we present a language fragment in which the arities of predicates are bounded by a constant. Subsequently, we analyze the complexity of various reasoning tasks and computational problems for this fragment, comprising answer set existence, brave and cautious reasoning, and strong equivalence. Generally speaking, it turns out that the complexity drops significantly with respect to the full non-ground language, but is still harder than for the respective ground or propositional languages. These results have several implications, most importantly for solver implementations: Virtually all currently available solvers have exponential (in the size of the input) space requirements even for programs with bounded predicate arities, while our results indicate that for those programs polynomial space should be sufficient. This can be seen as a manifestation of the “grounding bottleneck” (meaning that programs are first instantiated and then solved) from which answer set programming solvers currently suffer. As a final contribution, we provide a sketch of a method that can avoid the exponential space requirement for programs with bounded predicate arities. Some results in this paper have been presented in preliminary form at KR 2004 [15].  相似文献   

9.
The stable model semantics (cf. Gelfond and Lifschitz [1]) for logic programs suffers from the problem that programs may not always have stable models. Likewise, default theories suffer from the problem that they do not always have extensions. In such cases, both these formalisms for non-monotonic reasoning have an inadequate semantics. In this paper, we propose a novel idea-that of extension classes for default logics, and of stable classes for logic programs. It is shown that the extension class and stable class semantics extend the extension and stable model semantics respectively. This allows us to reason about inconsistent default theories, and about logic programs with inconsistent completions. Our work extends the results of Marek and Truszczynski [2] relating logic programming and default logics.  相似文献   

10.
This paper presents a novel revision of the framework of Hybrid Probabilistic Logic Programming, along with a complete semantics characterization, to enable the encoding of and reasoning about real-world applications. The language of Hybrid Probabilistic Logic Programs framework is extended to allow the use of non-monotonic negation, and two alternative semantical characterizations are defined: stable probabilistic model semantics and probabilistic well-founded semantics. These semantics generalize the stable model semantics and well-founded semantics of traditional normal logic programs, and they reduce to the semantics of Hybrid Probabilistic Logic programs for programs without negation. It is the first time that two different semantics for Hybrid Probabilistic Programs with non-monotonic negation as well as their relationships are described. This proposal provides the foundational grounds for developing computational methods for implementing the proposed semantics. Furthermore, it makes it clearer how to characterize non-monotonic negation in probabilistic logic programming frameworks for commonsense reasoning. An erratum to this article can be found at  相似文献   

11.
Gelfond and Lifschitz were the first to point out the need for a symmetric negation in logic programming and they also proposed a specific semantics for such negation for logic programs with the stable semantics, which they called 'classical'. Subsequently, several researchers proposed different, often incompatible, forms of symmetric negation for various semantics of logic programs and deductive databases. To the best of our knowledge, however, no systematic study of symmetric negation in non-monotonic reasoning was ever attempted in the past. In this paper we conduct such a systematic study of symmetric negation. We introduce and discuss two natural, yet different, definitions of symmetric negation: one is called strong negation and the other is called explicit negation. For logic programs with the stable semantics, both symmetric negations coincide with Gelfond–Lifschitz' 'classical negation'. We study properties of strong and explicit negation and their mutual relationship as well as their relationship to default negation 'not', and classical negation '¬'. We show how one can use symmetric negation to provide natural solutions to various knowledge representation problems, such as theory and interpretation update, and belief revision. Rather than to limit our discussion to some narrow class of nonmonotonic theories, such as the class of logic programs with some specific semantics, we conduct our study so that it is applicable to a broad class of non-monotonic formalisms. In order to achieve the desired level of generality, we define the notion of symmetric negation in the knowledge representation framework of AutoEpistemic logic of Beliefs, introduced by Przymusinski.  相似文献   

12.
沈榆平  赵希顺 《软件学报》2008,19(4):869-878
回答集编程(answer set programming,ASP)是一种回答集语义下的逻辑编程范例,可应用于非单调推理,叙述式问题求解等领域.本文为ASP提出并实现了一种破圈启发方法与一种基部限制式前向搜索过程,所得到的系统称为LPS.实验结果显示,相对于其他经典的ASP系统,LPS能够有效地解决处于相变难区域中的逻辑程序,通常这些程序被认为是计算困难的.除此以外,通过使用被称为动态变元过滤(dynamic variable filtering,DVF)的技术,LPS可以在计算过程中极大地缩小搜索树的尺寸.  相似文献   

13.
Logic programming under the stable model semantics is proposed as a non-monotonic language for knowledge representation and reasoning in artificial intelligence. In this paper, we explore and extend the notion of compatibility and the Λ operator, which were first proposed by Zhang to characterize default theories. First, we present a new characterization of stable models of a logic program and show that an extended notion of compatibility can characterize stable submodels. We further propose the notion of weak auto-compatibility which characterizes the Normal Forward Chaining Construction proposed by Marek, Nerode and Remmel. Previously, this construction was only known to construct the stable models of FC-normal logic programs, which turn out to be a proper subclass of weakly auto-compatible logic programs. We investigate the properties and complexity issues for weakly auto-compatible logic programs and compare them with some subclasses of logic programs.  相似文献   

14.
Abstract argumentation   总被引:1,自引:0,他引:1  
In this paper we explore the thesis that the role of argumentation in practical reasoning in general and legal reasoning in particular is to justify the use of defeasible rules to derive a conclusion in preference to the use of other defeasible rules to derive a conflicting conclusion. The defeasibility of rules is expressed by means of non-provability claims as additional conditions of the rules.We outline an abstract approach to defeasible reasoning and argumentation which includes many existing formalisms, including default logic, extended logic programming, non-monotonic modal logic and auto-epistemic logic, as special cases. We show, in particular, that the admissibility semantics for all these formalisms has a natural argumentation-theoretic interpretation and proof procedure, which seem to correspond well with informal argumentation.In the admissibility semantics there is only one way for one argument to attack another, namely by undermining one of its non-provability claims. In this paper, we show how other kinds of attack between arguments, specifically how rebuttal and priority attacks, can be reduced to the undermining of non-provability claims.  相似文献   

15.
The abstract nature of Dung's seminal theory of argumentation accounts for its widespread application as a general framework for various species of non-monotonic reasoning, and, more generally, reasoning in the presence of conflict. A Dung argumentation framework is instantiated by arguments and a binary conflict based attack relation, defined by some underlying logical theory. The justified arguments under different extensional semantics are then evaluated, and the claims of these arguments define the inferences of the underlying theory. To determine a unique set of justified arguments often requires a preference relation on arguments to determine the success of attacks between arguments. However, preference information is often itself defeasible, conflicting and so subject to argumentation. Hence, in this paper we extend Dung's theory to accommodate arguments that claim preferences between other arguments, thus incorporating meta-level argumentation based reasoning about preferences in the object level. We then define and study application of the full range of Dung's extensional semantics to the extended framework, and study special classes of the extended framework. The extended theory preserves the abstract nature of Dung's approach, thus aiming at a general framework for non-monotonic formalisms that accommodate defeasible reasoning about as well as with preference information. We illustrate by formalising argument based logic programming with defeasible priorities in the extended theory.  相似文献   

16.
非单调推理是众多人工智能应用系统都可能面对的问题,多Agent系统也不例外。在前期关于Agent BDI逻辑、多Agent合作逻辑、多Agent合作问题求解过程建模等研究工作的基础上,借鉴Baral等人开发非单调线性时态逻辑N-LTL的技术,利用强弱例外对多Agent合作逻辑的开创性工作交互时态逻辑(ATL)进行拓展,建立非单调交互时态逻辑NATL,给出其语法和语义。是对ATL进行非单调拓展的首次有益尝试。可以考虑以之为理论工具对多Agent思维状态及其动态修正机制进行妥善刻画。  相似文献   

17.
We present a logic programming language, GCLA*** (Generalized horn Clause LAnguage), that is based on a generalization of Prolog. This generalization is unusual in that it takes a quite different view of the meaning of a logic program—a “definitional” view rather than the traditional logical view. GCLA has a number of noteworthy properties, for instance hypothetical and non-monotonic reasoning. This makes implementation of reasoning in knowledge-based systems more direct in GCLA than in Prolog. GCLA is also general enough to incorporate functional programming as a special case. GCLA and its syntax and semantics are described. The use of various language constructs are illustrated with several examples.  相似文献   

18.
PRL: A probabilistic relational language   总被引:1,自引:0,他引:1  
In this paper, we describe the syntax and semantics for a probabilistic relational language (PRL). PRL is a recasting of recent work in Probabilistic Relational Models (PRMs) into a logic programming framework. We show how to represent varying degrees of complexity in the semantics including attribute uncertainty, structural uncertainty and identity uncertainty. Our approach is similar in spirit to the work in Bayesian Logic Programs (BLPs), and Logical Bayesian Networks (LBNs). However, surprisingly, there are still some important differences in the resulting formalism; for example, we introduce a general notion of aggregates based on the PRM approaches. One of our contributions is that we show how to support richer forms of structural uncertainty in a probabilistic logical language than have been previously described. Our goal in this work is to present a unifying framework that supports all of the types of relational uncertainty yet is based on logic programming formalisms. We also believe that it facilitates understanding the relationship between the frame-based approaches and alternate logic programming approaches, and allows greater transfer of ideas between them. Editors: Hendrik Blockeel, David Jensen and Stefan Kramer An erratum to this article is available at .  相似文献   

19.
Preference logic programming (PLP) is an extension of logic programming for declaratively specifying problems requiring optimization or comparison and selection among alternative solutions to a query. PLP essentially separates the programming of a problem itself from the criteria specification of its solution selection. In this paper we present a declarative method for specifying preference logic programs. The method introduces a precise formalization for the syntax and semantics of PLP. The syntax of a preference logic program contains two disjoint sets of definite clauses, separating a core program specifying a general computational problem from its preference rules for optimization; the semantics of PLP is given based on the Herbrand model and fixed point theory, where how preferences affects the least Herbrand model of a logic program is interpreted as a sequence of meta-level mapping operations. In addition, we present an operational semantics based on a new resolution strategy and a memoized recursive algorithm for computing strictly stratified logic programs with well-formed preferences, and further show that the operational semantics of such a preference logic program is consistent to its declarative semantics.  相似文献   

20.
介绍可编程逻辑器件(FPGA)与数字信号处理器(DSP)在航空发动机参数采集系统中的应用研究。文章以EP4CE115F23I7可编程逻辑器件与TMS320VC5416数字信号处理器为核心设计、开发发动机参数采集系统。采用模块化设计,根据电路功能将发动机参数采集系统硬件分解为AD信号采集模块、通讯模块、离散量控制模块、数据处理模块以及参数记录模块。FPGA软件方面采用应用广泛的VERILOG语言,DSP软件采用C语言与汇编语言混合编程。并将发动机参数采集系统成功应用于某型直升机,效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号