首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Liu  Qiang  Teng  Qizhi  Chen  Honggang  Li  Bo  Qing  Linbo 《Applied Intelligence》2022,52(1):547-563

Visible and infrared person re-identification (VI-ReID) describes the task of matching the images of a person, captured by visible-light and infrared cameras; this is a particular challenge in night time surveillance applications. Existing cross-modality recognition studies have been conducted mainly with a focus on learning the global and shareable feature representation of pedestrians to handle cross-modality discrepancies. However, the global features of pedestrian images cannot solve the unaligned image pairs efficiently, particularly when encountering the human appearance or posture misalignment caused by inaccurate pedestrian detection boxes. To mitigate the impact of these problems, we propose an end-to-end dual alignment and partitioning network to simultaneously learn global and local modal invariant features of pedestrians. First, we use two adaptive spatial transform modules to align the visible and infrared input images. Subsequently, the aligned image is divided horizontally, and the features of each local block are extracted. Then, we fuse these local features with global features. To alleviate the differences between heterogeneous modals and learn the common feature representation of heterogeneous modals, we map the features of heterogeneous modes into the same feature embedding space. Finally, we use the combination of identity loss and weighted regularized TriHard loss to improve the recognition accuracy. Extensive experimental results on two cross-modality datasets, RegDB and SYSU-MM01, demonstrate the superiority of the proposed method over other existing state-of-the-art methods.

  相似文献   

2.
Goyal  Neha  Kumar  Nitin  Kapil 《Multimedia Tools and Applications》2022,81(22):32243-32264

Automated plant recognition based on leaf images is a challenging task among the researchers from several fields. This task requires distinguishing features derived from leaf images for assigning class label to a leaf image. There are several methods in literature for extracting such distinguishing features. In this paper, we propose a novel automated framework for leaf identification. The proposed framework works in multiple phases i.e. pre-processing, feature extraction, classification using bagging approach. Initially, leaf images are pre-processed using image processing operations such as boundary extraction and cropping. In the feature extraction phase, popular nature inspired optimization algorithms viz. Spider Monkey Optimization (SMO), Particle Swarm Optimization (PSO) and Gray Wolf Optimization (GWO) have been exploited for reducing the dimensionality of features. In the last phase, a leaf image is classified by multiple classifiers and then output of these classifiers is combined using majority voting. The effectiveness of the proposed framework is established based on the experimental results obtained on three datasets i.e. Flavia, Swedish and self-collected leaf images. On all the datasets, it has been observed that the classification accuracy of the proposed method is better than the individual classifiers. Furthermore, the classification accuracy for the proposed approach is comparable to deep learning based method on the Flavia dataset.

  相似文献   

3.
为了进一步加强金属断口图像特征的鉴别能力,提高断口图像的识别率,提出基于全局与局部纹理特征的多特征融合算法.首先利用Trace变换提取图像全局纹理特征,局部二值模式提取图像局部纹理特征.然后采用动态加权鉴别能量分析对2种特征进行优选和自适应加权融合.最后采用支持向量机进行分类识别.在金属断口图像库上实验表明,文中方法识别率较高,在其它的纹理数据库上具有较好的泛化能力.  相似文献   

4.

No reference image quality assessment (NR-IQA) has received considerable importance in the last decade due to a rise in the use of multimedia content in our daily lives. Due to limitations in technology, multiple distortions may be introduced in the images that need to be assessed. Recently feature selection has shown promising results for single distorted NR-IQA and their effectiveness on multiple distorted images still need to be addressed. In this paper, impact of feature level fusion and feature selection on multiple distorted image quality assessment is presented. To this end features are extracted from multiple distorted images using six NR-IQA techniques (BLIINDS-II, BRISQUE, CurveletQA, DIIVINE, GM-LOG, SSEQ) that extract features in different (discrete cosine transform, spatial, curvelet transform, wavelet transform, spatial and gradient, spatial and spectral) domains. The extracted features from different domains are fused to generate a single feature vector. All combinations of feature-level fusion from six different techniques have been evaluated. Three different feature selection algorithms (genetic search, linear forward search, particle swarm optimization) are then applied to select optimum features for NR-IQA. The selected features are then used by the support vector regression model to predict the quality score. The performance of the proposed methodology is evaluated for two multiple distorted IQA databases (LIVE multiple distorted image dataset (LIVEMD), multiply distorted image database (MDID2017)), two singly synthetically distorted IQA databases (Tampere image database (TID2013), Computational and subjective image quality database (CSIQ)), and one screen content IQA database (Screen content image quality database (SIQAD)). Experimental results show that the fusion of features from different domains gives better performance in comparison to existing multiple-distorted NR-IQA techniques with SROCC scores of 0.9555, 0.9587, 0.6892, 0.9452, and 0.7682 on the LIVEMD, MDID, TID2013, CSIQ, and SIQAD databases respectively. Moreover, the performance is further improved when the genetic search feature selection algorithm is applied to fused features to remove the redundant and irrelevant features. The SROCC scores are improved to 0.9691, 0.9723, and 0.6897 for LIVEMD, MDID, and TID2013 databases respectively.

  相似文献   

5.

This paper presents an adaptive technique for obtaining centers of the hidden layer neurons of radial basis function neural network (RBFNN) for face recognition. The proposed technique uses firefly algorithm to obtain natural sub-clusters of training face images formed due to variations in pose, illumination, expression and occlusion, etc. Movement of fireflies in a hyper-dimensional input space is controlled by tuning the parameter gamma (γ) of firefly algorithm which plays an important role in maintaining the trade-off between effective search space exploration, firefly convergence, overall computational time and the recognition accuracy. The proposed technique is novel as it combines the advantages of evolutionary firefly algorithm and RBFNN in adaptive evolution of number and centers of hidden neurons. The strength of the proposed technique lies in its fast convergence, improved face recognition performance, reduced feature selection overhead and algorithm stability. The proposed technique is validated using benchmark face databases, namely ORL, Yale, AR and LFW. The average face recognition accuracies achieved using proposed algorithm for the above face databases outperform some of the existing techniques in face recognition.

  相似文献   

6.

In machine learning, image classification accuracy generally depends on image segmentation and feature extraction methods with the extracted features and its qualities. The main focus of this paper is to determine the defected area of mangoes using image segmentation algorithm for improving the classification accuracy. The Enhanced Fuzzy based K-means clustering algorithm is designed for increasing the efficiency of segmentation. Proposed segmentation method is compared with K-means and Fuzzy C-means clustering methods. The geometric, texture and colour based features are used in the feature extraction. Process of feature selection is done by Maximally Correlated Principal Component Analysis (MCPCA). Finally, in the classification step, severe portions of the affected area are analyzed by Backpropagation Based Discriminant Classifier (BBDC). Proposed classifier is compared with BPNN and Naive Bayes classifiers. The images are classified into three classes in final output like Class A –good quality mango, Class B-average quality mango, and Class C-poor quality mango. Finally, the evaluated results of the proposed model examine various defected and healthy mango images and prove that the proposed method has the highest accuracy when compared with existing methods.

  相似文献   

7.
目的 虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环形区域,有着丰富的纹理信息。虹膜纹理具有高度的区分性和稳定性。人种分类是解决虹膜识别在大规模数据库上应用难题的主要方法之一。现有的虹膜图像人种分类方法主要采用手工设计的特征,而且针对亚洲人和非亚洲人的基本人种分类,无法很好地解决亚种族分类问题。为此提出一种基于虹膜纹理深度特征和Fisher向量的人种分类方法。方法 首先用CNN(convolutional neural network)对归一化后的虹膜纹理图像提取深度特征向量,作为底层特征;然后使用高斯混合模型提取Fisher向量作为最终的虹膜特征表达;最后用支持向量机分类得到最终结果。结果 本文方法在亚洲人和非亚洲人的数据集上采用non-person-disjoint的方式取得99.93%的准确率,采用person-disjoint的方式取得91.94%的准确率;在汉族人和藏族人的数据集上采用non-person-disjoint的方式取得99.69%的准确率,采用person-disjoint的方式取得82.25%的准确率。结论 本文通过数据驱动的方式从训练数据中学习到更适合人种分类的特征,可以很好地实现对基本人种以及亚种族人种的分类,提高了人种分类的精度。同时也首次证明了用虹膜图像进行亚种族分类的可行性,对人种分类理论进行了进一步地丰富和完善。  相似文献   

8.
目的 卷积神经网络在图像识别算法中得到了广泛应用。针对传统卷积神经网络学习到的特征缺少更有效的鉴别能力而导致图像识别性能不佳等问题,提出一种融合线性判别式思想的损失函数LDloss(linear discriminant loss)并用于图像识别中的深度特征提取,以提高特征的鉴别能力,进而改善图像识别性能。方法 首先利用卷积神经网络搭建特征提取所需的深度网络,然后在考虑样本分类误差最小化的基础上,对于图像多分类问题,引入LDA(linear discriminant analysis)思想构建新的损失函数参与卷积神经网络的训练,来最小化类内特征距离和最大化类间特征距离,以提高特征的鉴别能力,从而进一步提高图像识别性能,分析表明,本文算法可以获得更有助于样本分类的特征。其中,学习过程中采用均值分批迭代更新的策略实现样本均值平稳更新。结果 该算法在MNIST数据集和CK+数据库上分别取得了99.53%和94.73%的平均识别率,与现有算法相比较有一定的提升。同时,与传统的损失函数Softmax loss和Hinge loss对比,采用LDloss的深度网络在MNIST数据集上分别提升了0.2%和0.3%,在CK+数据库上分别提升了9.21%和24.28%。结论 本文提出一种新的融合判别式深度特征学习算法,该算法能有效地提高深度网络的可鉴别能力,从而提高图像识别精度,并且在测试阶段,与Softmax loss相比也不需要额外的计算量。  相似文献   

9.
This article proposes two novel feature selection methods for dimension reduction according to max–min-associated indices derived from Cramer's V-test coefficient. The proposed methods incrementally select features simultaneously satisfying the criteria of a statistically maximal association (A) between target labels and features and a minimal association (R) among selected features with respect to Cramer's V-test value. Two indices are developed by different combinations of the A and R conditions. One index is to maximize A/R and the other is to maximize A–λR, which are referred to as the MMAIQ and MMAIS methods, respectively. Since the proposed feature selection algorithms are feature filter methods, how to determine the best number of features is another important issue. This article adopts an information lost criterion by measuring the variation between χ2 and β statistics to optimize the number of features selected associated with the Gaussian maximal likelihood classifier (GMLC). To validate the proposed methods, experiments are conducted with both a hyperspectral image data set and a high spatial resolution image data set. The results demonstrate that the proposed methods can provide an effective tool for feature selection and improve classification accuracy significantly. Furthermore, the proposed methods with well-known feature selection methods, i.e. mutual information-based max-dependency criterion (mRMR) and sequential forward selection (SFS), are evaluated and compared. The experiments demonstrate that the proposed methods can offer better results in terms of kappa coefficient and overall classification accuracy measurements.  相似文献   

10.
Feature selection of very high-resolution (VHR) images is a key prerequisite for supervised classification. However, it is always difficult to acquire the features which have the highest correlation to the type of land cover for improving classification accuracy. To address this problem, this paper proposed a methodology of feature selection using the results of multiple segmentation via genetic algorithm (GA) and correlation feature selection (CFS) integrating sparse auto-encoder (SAE). Firstly, 61 features, including spectral features and spatial features, are extracted from the results of multi-scale segmentation over a WorldView-2 image in Xicheng District, Beijing. Then, 40-dimensional features and 30-dimensional features are derived from the selection with GA+CFS and the optimization with SAE, respectively. Thirdly, the final classification is achieved by logistic regression (LR) based on different subsets of features extracted from the WorldView-2 image. It is found that the result of feature selection could contribute to increase in the intra-species separation and reduction in the inner-species variability. Adding extra lower-ranked features appeared to reduce the accuracy of classification. The results indicate that the overall classification accuracy with 30-dimensional features reached 87.56%, and increased 5.61% compared to the results with 61-dimensional features. For the two kinds of optimized features, the Z-test values are all greater than 1.96, which implied that feature dimensionality reduction and feature space optimization could significantly improve the accuracy of image land cover classification. The texture features in the wavelet domain are the most important features for the study area in the WorldView-2 image classification. Adding wavelet and the grey-level co-occurrence matrix (GLCM) information, especially for GLCM features in wavelet, appeared not to improve classification accuracy. The SAE-based method can produce feature subsets for improving mapping accuracy more efficiently.  相似文献   

11.
目的 视觉目标的形状特征表示和识别是图像领域中的重要问题。在实际应用中,视角、形变、遮挡和噪声等干扰因素造成识别精度较低,且大数据场景需要算法具有较高的学习效率。针对这些问题,本文提出一种全尺度可视化形状表示方法。方法 在尺度空间的所有尺度上对形状轮廓提取形状的不变量特征,获得形状的全尺度特征。将获得的全部特征紧凑地表示为单幅彩色图像,得到形状特征的可视化表示。将表示形状特征的彩色图像输入双路卷积网络模型,完成形状分类和检索任务。结果 通过对原始形状加入旋转、遮挡和噪声等不同干扰的定性实验,验证了本文方法具有旋转和缩放不变性,以及对铰接变换、遮挡和噪声等干扰的鲁棒性。在通用数据集上进行形状分类和形状检索的定量实验,所得准确率在不同数据集上均超过对比算法。在MPEG-7数据集上精度达到99.57%,对比算法的最好结果为98.84%。在铰接和射影变换数据集上皆达到100%的识别精度,而对比算法的最好结果分别为89.75%和95%。结论 本文提出的全尺度可视化形状表示方法,通过一幅彩色图像紧凑地表达了全部形状信息。通过卷积模型既学习了轮廓点间的形状特征关系,又学习了不同尺度间的形状特征关系。本文方法在视角变化、局部遮挡、铰接变形和噪声等干扰下能保持较高的识别正确率,可应用于图像采集干扰较多以及红外或深度图像的目标识别,并适用于大数据场景下的识别任务。  相似文献   

12.
Liu  Jin  Wang  Xiang  Zhang  Xiangrong  Pan  Yi  Wang  Xiaosheng  Wang  Jianxin 《Multimedia Tools and Applications》2018,77(22):29651-29667

Schizophrenia (SZ) is a complex neuropsychiatric disorder that seriously affects the daily life of patients. Therefore, accurate diagnosis of SZ is essential for patient care. Several T1-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) markers (e.g., cortical thickness (CT), mean diffusivity (MD)) for SZ have been identified by using some existing brain atlases, and have been used successfully to discriminate patients with SZ from healthy controls (HCs). Currently, these markers have mainly been used separately. Thus, the full potential of T1-weighted MRI images and DTI images for SZ diagnosis might not yet have been used comprehensively. Furthermore, the extraction of these markers based on single brain atlas might not yet be able to use the full potential of these images. Therefore, in this study, we propose a multi-modality multi-atlas feature representation and a multi-kernel learning method (MMM) to perform SZ/HC classification. Firstly, we extract 8 feature sets from T1-weighted MRI images and DTI images via 4 existing brain atlases and 4 markers. Then, a two-step feature selection method is proposed to select the most discriminative features of each feature set for SZ/HC classification. Finally, a multiple feature sets based multi-kernel SVM learning method (MFMK-SVM) is proposed to combine all feature sets for SZ/HC classification. Experimental results show that our proposed method achieves an accuracy of 91.28%, a sensitivity of 90.85%, a specificity of 92.17% and an AUC of 0.9485 for SZ/HC classification. Experimental results illustrate that our proposed classification method is efficient and promising for clinical diagnosis of SZ.

  相似文献   

13.
针对利用单一特征集对肠癌病理图像的识别率难以提高这一情况,提出了一个基于HOG-GLRLM特征肠癌病理图片分类方法。考虑到图像中丰富的纹理和边缘信息,分别利用改进型的灰度行程矩阵和梯度方向直方图提取特征。并采用最小冗余最大关联的方法对各自和合并特征集进行特征选择。实验结果表明该方法的有效性。  相似文献   

14.
目的 车型识别在智能交通、智慧安防、自动驾驶等领域具有十分重要的应用前景。而车型识别中,带标签车型数据的数量是影响车型识别的重要因素。本文以"增强数据"为核心,结合PGGAN(progressive growing of GANs)和Attention机制,提出一种基于对抗网络生成数据再分类的网络模型AT-PGGAN(attention-progressive growing of GANs),采用模型生成带标签车型图像的数量,从而提高车型识别准确率。方法 该模型由生成网络和分类网络组成,利用生成网络对训练数据进行增强扩充,利用注意力机制和标签重嵌入方法对生成网络进行优化使其生成图像细节更加完善,提出标签重标定的方法重新确定生成图像的标签数据,并对生成图像进行相应的筛选。使用扩充的图像加上原有数据集的图像作为输入训练分类网络。结果 本文模型能够很好地扩充已有的车辆图像,在公开数据集StanfordCars上,其识别准确率相比未使用AT-PGGAN模型进行数据扩充的分类网络均有1%以上的提升,在CompCars上与其他网络进行对比,本文方法在同等条件下最高准确率达到96.6%,高于对比方法。实验结果表明该方法能有效提高车辆精细识别的准确率。结论 将生成对抗网络用于对数据的扩充增强,生成图像能够很好地模拟原图像数据,对原图像数据具有正则的作用,图像数据可以使图像的细粒度识别准确率获得一定的提升,具有较大的应用前景。  相似文献   

15.

Orthogonal moments and their invariants to geometric transformations for gray-scale images are widely used in many pattern recognition and image processing applications. In this paper, we propose a new set of orthogonal polynomials called adapted Gegenbauer–Chebyshev polynomials (AGC). This new set is used as a basic function to define the orthogonal adapted Gegenbauer–Chebyshev moments (AGCMs). The rotation, scaling, and translation invariant property of (AGCMs) is derived and analyzed. We provide a novel series of feature vectors of images based on the adapted Gegenbauer–Chebyshev orthogonal moments invariants (AGCMIs). We practice a novel image classification system using the proposed feature vectors and the fuzzy k-means classifier. A series of experiments is performed to validate this new set of orthogonal moments and compare its performance with the existing orthogonal moments as Legendre invariants moments, the Gegenbauer and Tchebichef invariant moments using three different image databases: the MPEG7-CE Shape database, the Columbia Object Image Library (COIL-20) database and the ORL-faces database. The obtained results ensure the superiority of the proposed AGCMs over all existing moments in representation and recognition of the images.

  相似文献   

16.
目的 车标是车辆的显著性特征,通过车标的分类与识别可以极大缩小车辆型号识别的范围,是车辆品牌和型号识别中的重要环节。基于特征描述子的车标识别算法存在如下缺点:一方面,算法提取的特征数量有限,不能全面描述车标的特征;另一方面,提取的特征过于冗杂,维度高,需要大量的计算时间。为了提取更加丰富的车标特征,提高识别效率,提出一种增强边缘梯度特征局部量化策略驱动下的车标识别方法。方法 首先提取车标图像的增强边缘特征,即根据不同的梯度方向提取梯度信息,生成梯度大小矩阵,并采用LTP(local ternary patterns)算子在梯度大小矩阵上进一步进行特征提取,然后采用特征码本对提取的特征进行量化操作,在确保车标特征描述能力的同时,精简了特征数目,缩短了局部向量的长度,最后采用WPCA(whitened principal component analysis)进行特征降维操作,并基于CRC(collaborative representation based classification)分类器进行车标的识别。结果 基于本文算法提取的车标特征向量,能够很好地描述车标图像的特征,在HFUT-VL1车标数据集上取得了97.85%的识别率(平均每类训练样本为10张),且在识别难度较大的XMU车标数据集上也能取得90%以上的识别率(平均每类训练样本为100张),与其他识别算法相比,识别率有明显提高,且具有更强的鲁棒性。结论 增强边缘梯度特征局部量化策略驱动下的车标识别算法提取的特征信息能够有效地描述车标,具有很高的识别率和很强的鲁棒性,大大降低了特征向量的维度,提高了识别效率。  相似文献   

17.
18.
This paper presents two new techniques, viz., DWT Dual-subband Frequency-domain Feature Extraction (DDFFE) and Threshold-Based Binary Particle Swarm Optimization (ThBPSO) feature selection, to improve the performance of a face recognition system. DDFFE uses a unique combination of DWT, DFT, and DCT, and is used for efficient extraction of pose, translation and illumination invariant features. The DWT stage selectively utilizes the approximation coefficients along with the horizontal detail coefficients of the 2-dimensional DWT of a face image, whilst retaining the spatial correlation of pixels. The translation variance problem of the DWT is compensated in the following DFT stage, which also exploits the frequency characteristics of the image. Then, all the low frequency components present at the center of the DFT spectrum are extracted by drawing a quadruple ellipse mask around the spectrum center. Finally, DCT is used to lay the ground for BPSO based feature selection. The second proposed technique, ThBPSO, is a novel feature selection algorithm, based on the recurrence of selected features, and is used to search the feature space to obtain a feature subset for recognition. Experimental results obtained by applying the proposed algorithm on seven benchmark databases, namely, Cambridge ORL, UMIST, Extended Yale B, CMUPIE, Color FERET, FEI, and HP, show that the proposed system outperforms other FR systems. A significant increase in the recognition rate and a substantial reduction in the number of features required for recognition are observed. The experimental results indicate that the minimum feature reduction obtained is 98.2% for all seven databases.  相似文献   

19.
The recognition of Indian and Arabic handwriting is drawing increasing attention in recent years. To test the promise of existing handwritten numeral recognition methods and provide new benchmarks for future research, this paper presents some results of handwritten Bangla and Farsi numeral recognition on binary and gray-scale images. For recognition on gray-scale images, we propose a process with proper image pre-processing and feature extraction. In experiments on three databases, ISI Bangla numerals, CENPARMI Farsi numerals, and IFHCDB Farsi numerals, we have achieved very high accuracies using various recognition methods. The highest test accuracies on the three databases are 99.40%, 99.16%, and 99.73%, respectively. We justified the benefit of recognition on gray-scale images against binary images, compared some implementation choices of gradient direction feature extraction, some advanced normalization and classification methods.  相似文献   

20.
Cao  Wenyan  Wang  Ranfeng  Fan  Minqiang  Fu  Xiang  Wang  Haoran  Wang  Yulong 《Applied Intelligence》2022,52(1):732-752

Intelligent separation is a core technology in the transformation, upgradation, and high-quality development of coal. Realising the intelligent recognition and accurate classification of coal flotation froth is a key technology of intelligent separation. At present, the coal flotation process relies on artificial recognition of froth features for adjusting the reagent dosage. However, owing to the low accuracy and subjectivity of artificial recognition, some problems arise, such as reagent wastage and unqualified product quality. Thus, this paper proposes a new froth image classification method based on the maximal-relevance-minimal-redundancy (MR MR)-semi-supervised Gaussian mixture model (SSGMM) hybrid model for recognition of reagent dosage condition in the coal flotation process. First, the features of morphology, colour, and texture are extracted, and the optimal froth image features are screened out using the maximal-relevance-minimal-redundancy (MRMR) feature selection algorithm based on class information. Second, the traditional GMM clusterer is improved, called SSGMM, by introducing a small number of marked samples, the traditional GMM’ problems of unclear training goals, invisible clustering results, and artificially judged clustering results are solved. Then a new hybrid classification model is proposed by combining the MRMR with the modified GMM (SSGMM) which can be named as (MRMR - SSGMM). The optimal froth image features are screened by MRMR to provide the SSGMM classifier. In the process of training and learning the feature samples, using the marked feature samples of froth images to guide the unmarked feature samples. The information of marked feature samples of froth images is mapped to the unmarked feature samples, the classification of the froth images were realised. Finally, the accuracy of the SSGMM classifier is used as the evaluation criterion for the screened features by MRMR. By automatically executing the entire learning process to find the best number of froth image features and the optimal image features, so that the classifier achieves the maximum classification accuracy. Experimental results show that the proposed classification method achieves the best results in accuracy and time, compared with other benchmark classification methods. Application results show that the method can provide reliable guidance for the adjustment of the reagent dosage, realize the accurate and timely control of the reagent dosage, reduce the consumption of the reagent and the incidence of production accidents, and stabilize the product quality in the coal flotation production process.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号