首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Parameter setting for evolutionary algorithms is still an important issue in evolutionary computation. There are two main approaches to parameter setting: parameter tuning and parameter control. In this paper, we introduce self-adaptive parameter control of a genetic algorithm based on Bayesian network learning and simulation. The nodes of this Bayesian network are genetic algorithm parameters to be controlled. Its structure captures probabilistic conditional (in)dependence relationships between the parameters. They are learned from the best individuals, i.e., the best configurations of the genetic algorithm. Individuals are evaluated by running the genetic algorithm for the respective parameter configuration. Since all these runs are time-consuming tasks, each genetic algorithm uses a small-sized population and is stopped before convergence. In this way promising individuals should not be lost. Experiments with an optimal search problem for simultaneous row and column orderings yield the same optima as state-of-the-art methods but with a sharp reduction in computational time. Moreover, our approach can cope with as yet unsolved high-dimensional problems.  相似文献   

2.
The capacitated vehicle routing problem (CVRP), which aims at minimizing travel costs, is a wellknown NP-hard combinatorial optimization. Owing to its hardness, many heuristic search algorithms have been proposed to tackle this problem. This paper explores a recently proposed heuristic algorithm named the fireworks algorithm (FWA), which is a swarm intelligence algorithm. We adopt FWA for the combinatorial CVRP problem with several modifications of the original FWA: it employs a new method to generate "sparks" according to the selection rule, and it uses a new method to determine the explosion amplitude for each firework. The proposed algorithm is compared with several heuristic search methods on some classical benchmark CVRP instances. The experimental results show a promising performance of the proposed method. We also discuss the strengths and weaknesses of our algorithm in contrast to traditional algorithms.  相似文献   

3.
In this paper,a new dynamical evolutionary algorithm(DEA) is presented based on the theory of statistical mechanics.The novelty of this kind of dynamical evolutionary algorithm is that all individuals in a population(called particles in a dynamical system)are running and searching with their population evolving driven by a new selecting mechanism.This mechanism simulates the principle of molecular dynamics,which is easy to design and implement.A basic theoretical analysis for the dynamical evolutionary algorithm is given and as a consequence two stopping criteria of the algorithm are derived from the principle of energy minimization and the law of entropy increasing.In order to verify the effectiveness of the scheme,DEA is applied to sloving some typical numerical function minimization problems which are poorly solved by traditional evolutionary algorithms.The experimental results show that EAT is fast and reliable.  相似文献   

4.
Most of works on the time complexity analysis of evolutionary algorithms have always focused on some artificial binary problems. The time complexity of the algorithms for combinatorial optimisation has not been well understood. This paper considers the time complexity of an evolutionary algorithm for a classical combinatorial optimisation problem, to find the maximum cardinality matching in a graph. It is shown that the evolutionary algorithm can produce a matching with nearly maximum cardinality in average polynomial time.  相似文献   

5.
Combinations of Estimation of Distribution Algorithms and Other Techniques   总被引:1,自引:0,他引:1  
This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems:a) guided mutation,an offspring generator in which the ideas from EDAs and genetic algorithms are combined together,we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem,b)evolutionary algorithms refining a heuristic,we advocate a strategy for solving a hard optimization problem with complicated data structure,and c) combination of two different local search techniques and EDA for numerical global optimization problems,its basic idea is that not all the new generated points are needed to be improved by an expensive local search.  相似文献   

6.
《自动化博览》2011,(Z2):145-150
In the previous papers,Quantum-inspired multi-objective evolutionary algorithm(QMEA) was proved to be better than conventional genetic algorithms for multi-objective optimization problem.To improve the quality of the non-dominated set as well as the diversity of population in multi-objective problems,in this paper,a Novel Cloud -based quantum -inspired multi-objective evolutionary Algorithm(CQMEA) is proposed.CQMEA is proposed by employing the concept and principles of Cloud theory.The algorithm utilizes the random orientation and stability of the cloud model,uses a self-adaptive mechanism with cloud model of Quantum gates updating strategy to implement global search efficient.By using the self-adaptive mechanism and the better solution which is determined by the membership function uncertainly,Compared with several well-known algorithms such as NSGA-Ⅱ,QMEA.Experimental results show that(CQMEA) is more effective than QMEA and NSGA -Ⅱ.  相似文献   

7.
An improved heuristic ant-clustering algorithm(HAC)is presented in this paper.A device of ‘memory bank‘ is proposed,which can bring forth heuristic knowledge guiding ant to move in the bi-dimension grid space.The device lowers the randomness of ants‘ moving and avoids the producing of “un-assigned data object“.We have made some experiments on real data sets and synthetic data sets.The results demonstrate that HAC has superiority in misclassification error rate and runtime over the classical algorithm.  相似文献   

8.
In this paper, a technique is presented to determine the stability margin of the discrete systems using recursive algorithm for power of companion matrix and Gerschgorin Theorem and hence sufficient condition of stability is obtained. The method is illustrated with an example and it is compared with other methods proposed in the literature. The results have applications in the filter design.  相似文献   

9.
Handling multiple objectives with biogeography-based optimization   总被引:1,自引:0,他引:1  
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability effciently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.  相似文献   

10.
We propose a surrogate model-assisted algorithm by using a directed fuzzy graph to extract a user’s cognition on evaluated individuals in order to alleviate user fatigue in interactive genetic algorithms with an individual’s fuzzy and stochastic fitness. We firstly present an approach to construct a directed fuzzy graph of an evolutionary population according to individuals’ dominance relations, cut-set levels and interval dominance probabilities, and then calculate an individual’s crisp fitness based on the out-degree and in-degree of the fuzzy graph. The approach to obtain training data is achieved using the fuzzy entropy of the evolutionary system to guarantee the credibilities of the samples which are used to train the surrogate model. We adopt a support vector regression machine as the surrogate model and train it using the sampled individuals and their crisp fitness. Then the surrogate model is optimized using the traditional genetic algorithm for some generations, and some good individuals are submitted to the user for the subsequent evolutions so as to guide and accelerate the evolution. Finally, we quantitatively analyze the performance of the presented algorithm in alleviating user fatigue and increasing more opportunities to find the satisfactory individuals, and also apply our algorithm to a fashion evolutionary design system to demonstrate its efficiency.  相似文献   

11.
An improved heuristic recursive strategy combining with genetic algorithm is presented in this paper. Firstly, this method searches some rectangles, which have the same length or width, to form some layers without waste space, then it uses the heuristic recur sive strategies to calculate the height of the remaining packing order and uses the evolutionary capability of genetic algorithm to reduce the height. The computational results on several classes of benchmark problems have shown that the presented algorithm can compete with known evolutionary heuristics. It performs better especially for large test problems.  相似文献   

12.
求解矩形装箱问题的一种近似算法   总被引:1,自引:0,他引:1       下载免费PDF全文
陈胜达  张德富  刘艳娟 《计算机工程》2007,33(9):189-190,193
提出了利用近似算法求解二维矩形装箱问题的最小高度的一种方法。该方法基于启发式递归策略和遗传算法。利用启发式递归策略把所有大小各异的矩形都装入宽度固定的矩形容器中,并计算装完后所需容器的高度,用遗传算法的进化能力优化高度,使得所需容器的高度尽可能小。计算数据证明这种方法能够得到很好的结果,特别是对数据量大的测试问题,效果更好。  相似文献   

13.
In recent years, evolutionary algorithms (EAs) have been extensively developed and utilized to solve multi-objective optimization problems. However, some previous studies have shown that for certain problems, an approach which allows for non-greedy or uphill moves (unlike EAs), can be more beneficial. One such approach is simulated annealing (SA). SA is a proven heuristic for solving numerical optimization problems. But owing to its point-to-point nature of search, limited efforts has been made to explore its potential for solving multi-objective problems. The focus of the presented work is to develop a simulated annealing algorithm for constrained multi-objective problems. The performance of the proposed algorithm is reported on a number of difficult constrained benchmark problems. A comparison with other established multi-objective optimization algorithms, such as infeasibility driven evolutionary algorithm (IDEA), Non-dominated sorting genetic algorithm II (NSGA-II) and multi-objective Scatter search II (MOSS-II) has been included to highlight the benefits of the proposed approach.  相似文献   

14.
A fast and new heuristic recursive algorithm to find a minimum height for two-dimensional strip rectangular packing problem is presented. This algorithm is mainly based on heuristic strategies and a recursive structure, and its average running time is T(n)=θ(n3)T(n)=θ(n3). The computational results on a class of benchmark problems have shown that this algorithm not only finds shorter height than the known meta-heuristic ones, but also runs in shorter time. Especially for large test problems, it performs better.  相似文献   

15.
Evolutionary algorithms (EAs) have been applied to many optimization problems successfully in recent years. The genetic algorithm (GAs) and evolutionary programming (EP) are two different types of EAs. GAs use crossover as the primary search operator and mutation as a background operator, while EP uses mutation as the primary search operator and does not employ any crossover. This paper proposes a novel EP algorithm for cutting stock problems with and without contiguity. Two new mutation operators are proposed. Experimental studies have been carried out to examine the effectiveness of the EP algorithm. They show that EP can provide a simple yet more effective alternative to GAs in solving cutting stock problems with and without contiguity. The solutions found by EP are significantly better (in most cases) than or comparable to those found by GAs.Scope and purposeThe one-dimensional cutting stock problem (CSP) is one of the classical combinatorial optimization problems. While most previous work only considered minimizing trim loss, this paper considers CSPs with two objectives. One is the minimization of trim loss (i.e., wastage). The other is the minimization of the number of stocks with wastage, or the number of partially finished items (pattern sequencing or contiguity problem). Although some traditional OR techniques (e.g., programming based approaches) can find the global optimum for small CSPs, they are impractical to find the exact global optimum for large problems due to combinatorial explosion. Heuristic techniques (such as various hill-climbing algorithms) need to be used for large CSPs. One of the heuristic algorithms which have been applied to CSPs recently with success is the genetic algorithm (GA). This paper proposes a much simpler evolutionary algorithm than the GA, based on evolutionary programming (EP). The EP algorithm has been shown to perform significantly better than the GA for most benchmark problems we used and to be comparable to the GA for other problems.  相似文献   

16.
提出一种启发式递归与遗传算法相结合的混合启发式算法求解矩形件优化排样问题。首先给出一种启发式递归算法,利用该算法逐个从待排矩形件中生成局部利用率高的条料,直到所有待排矩形件均生成条料;利用遗传算法全局搜索能力强的特点,对这些条料序进行搜索重组,使其所用的板材数最少;最后再次利用遗传算法,对条料生成之前的矩形件种类序进行全局最优搜索,使总的板材利用率达到了最大。对两个典型实际算例进行计算,并与相关文献比较,结果表明了该算法的有效性。  相似文献   

17.
求解矩形Packing问题的砌墙式启发式算法   总被引:9,自引:0,他引:9  
为求解正交矩形Packing问题提出了一个新颖而有效的砌墙式启发式算法.该算法主要基于砌墙式启发式策略,其思想主要来源于砖匠在砌墙过程中所积累的经验:基于基准砖的砌墙规则.对国际上公认的大量的Bench-mark问题例的计算结果表明,该算法的计算速度不仅比著名的现代启发式算法快,而且获得更优的高度.  相似文献   

18.
蚁群算法作为一种新型的模拟进化算法,被广泛地用于路径规划问题。但是传统的蚁群算法存在搜索时间长、收敛速度慢、易于陷入局部最优等缺点,为了克服算法的不足,该文提出一种改进的双蚁群算法,通过改变启发因子,同时引入最大最小蚁群系统思想对信息素进行更新以提高算法性能。实验结果表明,与同类算法相比,该算法能得到更优的路径。  相似文献   

19.
提出了一种处理海量的不完备决策表的方法。将基于互信息的属性重要度作为启发式信息,利用遗传算法对不完备的原始决策表中的条件属性进行约简,形成包含missing值的决策表,称为优化决策表。利用原始决策表自身的信息,通过属性扩展,从优化决策表中抽取一致性决策规则,而无须计算missing值。该方法在UCI的8个数据集上的实验结果优于EMAV方法,是一种有效的从海量不完备决策表中抽取规则的方法。  相似文献   

20.
A two-leveled symbiotic evolutionary algorithm for clustering problems   总被引:3,自引:3,他引:0  
Because of its unsupervised nature, clustering is one of the most challenging problems, considered as a NP-hard grouping problem. Recently, several evolutionary algorithms (EAs) for clustering problems have been presented because of their efficiency for solving the NP-hard problems with high degree of complexity. Most previous EA-based algorithms, however, have dealt with the clustering problems given the number of clusters (K) in advance. Although some researchers have suggested the EA-based algorithms for unknown K clustering, they still have some drawbacks to search efficiently due to their huge search space. This paper proposes the two-leveled symbiotic evolutionary clustering algorithm (TSECA), which is a variant of coevolutionary algorithm for unknown K clustering problems. The clustering problems considered in this paper can be divided into two sub-problems: finding the number of clusters and grouping the data into these clusters. The two-leveled framework of TSECA and genetic elements suitable for each sub-problem are proposed. In addition, a neighborhood-based evolutionary strategy is employed to maintain the population diversity. The performance of the proposed algorithm is compared with some popular evolutionary algorithms using the real-life and simulated synthetic data sets. Experimental results show that TSECA produces more compact clusters as well as the accurate number of clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号