首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 296 毫秒
1.
针对风力机变桨距执行机构突变故障,提出了基于风速估计的自适应状态反馈滑模容错控制策略.首先,设计了基于自适应状态反馈滑模理论的鲁棒主动容错控制器,并结合全阶补偿器对控制律进行设计;然后,利用基于变速灰狼优化算法的组合径向基函数神经网络实现风速估计,可以改善风速测量精度并提高控制系统可靠性;最后,根据线性矩阵不等式和Lyapunov理论对控制器稳定性进行讨论,并与现有控制策略进行比较.仿真结果表明,在健康/故障的变桨距执行机构条件下,所提容错控制方法均能获得较好的控制效果.  相似文献   

2.
在额定风速以上时,为保证风电机组的安全稳定运行,需要降低风力机捕获风能,使风力机的转速及功率维持在额定值,基于微分几何反馈线性化方法,提出变桨距风力发电机组恒功率控制策略.建立了风力机的仿射非线性模型,采用微分几何反馈线性化变换实现全局精确线性化;根据新的线性化模型,以风力机转速为输出反馈变量,叶片桨距角为输入控制变量,设计桨距角控制器;在风速高于额定值时调节风力机维持在额定转速,从而实现额定风速以上的恒功率控制.仿真结果表明,所提控制策略能较好地解决变桨距风力发电机组额定风速以上的恒功率控制问题,控制方法具有较好的适应性和鲁棒性.  相似文献   

3.
基于微分几何的风力发电机组恒功率控制   总被引:5,自引:3,他引:2  
当风速超过额定值时, 可以通过降低风力机的转速实现恒功率控制从而避免使用复杂的变桨距机构, 本文基于微分几何理论设计了非线性控制器, 实现了变速风力发电机组的恒功率控制. 首先, 分析了风力机的空气动力学特性, 这是所提出的恒功率控制方法的理论依据; 然后, 通过微分几何反馈线性化变换, 将风力机的非线性模型全局线性化; 最后, 基于新的线性化模型设计了非线性控制器, 实现了变速风力机的全局精确线性化控制. 仿真结果表明, 所提出的控制方法在风速大范围变化的情况下能有效的实现变速风力发电机组额定风速以上的恒功率控制.  相似文献   

4.
兆瓦级同步风力发电机变桨距控制策略研究   总被引:4,自引:2,他引:2  
变桨距风力发电机已成为风力发电机组的主要研究和发展方向,结合长星集团同步风力发电机组,对变桨距控制技术进行了研究,在额定风速以下时实行变速运行,控制发电机的励磁电流从而控制发电机的转速,使得风力机转速能够跟随风速变化,保持最佳叶尖速比使系统获得最大的风能利用系数;额定风速以上时,采用PID控制算法控制桨距角,使发电机输出功率恒定,并提出了实现方法;通过仿真工具进行计算机仿真,验证了本方法的有效性。  相似文献   

5.
由于风速的随机性、不稳定性及气动效应的影响,使得风力发电机组变桨距控制系统具有非线性、参数时变性、强耦合等特点,难于实现高精度控制,导致风电机组输出电能质量较差。为了改善系统在恒功率输出运行区域内的动态性能,分析了风电机组变桨距控制系统的现状,建立了整个风电机组模型,提出了优化的变桨距控制策略,并设计了基于模糊控制的变桨距控制器。仿真结果表明,独立变桨距控制技术的控制效果比统一变桨距好,实现了风力机各叶片的优化独立变桨距控制,优化了风力发电系统在超过额定风速时的恒功率控制,具有抗干扰能力强、控制精度高的特点。  相似文献   

6.
基于直流电动机的风力机特性模拟   总被引:1,自引:0,他引:1  
张琦玮  蔡旭 《计算机仿真》2007,24(10):276-280,344
首先分析了风力机吸收风能原理.以此建立了风力机运行特性的数学模型,给出了风力机运行的功率特性和转矩特性,并利用Matlab/Simulink实现仿真.采用直流电动机模拟风力机特性以满足实验室风力发电研究的需要,通过风力机与直流电动机的模型,对比研究了风力机与直流电动机运行特性的异同,制定了实现简单、特性优良的转矩模拟方案,通过控制直流电动机电枢绕组电流来实现风力机转矩特性的模拟.以此为基础在Matlab环境中组建了风力机特性的模拟系统.对风速变化及机组转速变化两种典型运行条件下的风力机运行特性进行了模拟,模拟结果与理论数据达到了高度的吻合.基于转矩模拟算法的风力机特性模拟方案,可方便地应用于实验室条件下风力发电技术的研究.  相似文献   

7.
基于风力机的发电效率因环境风速变化而改变,本文选用LabVIEW为仿真平台建立风力机最大功率点的追踪系统。首先根据风力机的风能捕获输出功率公式,在LabVIEW平台上搭建了风力机系统模块、风力机控制模块、风轮转速调节模块、风速变化判断模块等。为了弥补传统扰动法存在的追踪精度等问题,利用变步长的扰动观测法对输出功率进行最大功率点追踪,使风力机的输出功率保持在最大输出功率。实验结果表明该系统在不同的仿真风速环境下,能有效的追踪风力机最大输出功率点。  相似文献   

8.
针对具有很强非线性的风力机桨叶系统,利用动量矩定理,建立桨叶动力学数学模型,采用自适应反演控制,设计独立变桨鲁棒自适应桨距角跟踪控制器;该控制方法采用在实际控制量中,引入自适应鲁棒项,克服和消除不确定性对桨叶系统的影响;利用Matlab/Simulink软件,搭建风力机仿真平台,仿真结果验证了所提出控制方法的可行性和有效性;在桨叶系统参数不确定、受到未知不平衡载荷的情况下,经过自适应过程,设计的控制器较好地实现了风力机桨叶桨距角独立、快速跟踪各自期望的桨距角。  相似文献   

9.
定桨距垂直轴风力发电机存在启动转矩小和输出效率低的缺点。为了改善垂直轴风电机组的输出特性,在静止和旋转状态下,对6叶片H型垂直轴风力发电机的风轮的受力情况进行了分析。首先建立了H型垂直轴风力机模型,然后对单个叶片变桨距与定桨距下的受力进行了分析,进而对6叶片风力机受力进行了分析。理论分析和仿真结果表明,叶片通过采取变桨距控制,不但有效地改善了H型垂直轴风力机的启动性能,并且减小了输出振动。因此,所提出的变桨距控制方法是可行的。  相似文献   

10.
基于欧姆龙PLC的风电机组变桨距系统   总被引:1,自引:0,他引:1  
在风力发电系统中。变桨距控制技术关系到风力发电机组的安全可靠运行,影响风力机的使用寿命,通过控制桨距角使输出功率平稳、减小转矩振荡、减小机舱振荡,不但优化了输出功率。而且有效的降低噪音。稳定发电机的输出功率,改善桨叶和整机的受力状况。变桨距风力发电机比定桨距风力发电机具有更好的风能捕捉特性。现代的大型风力发电机大多采用变桨距控制。  相似文献   

11.
为提高风力机发电系统的风能利用效率、改善输出电能质量,针对变速变桨风力发电机组的控制问题,以混杂系统理论为核心,建立了应用于变速变桨风力机组的混杂自动机控制结构。同时,结合模糊控制理论,给出控制器的算法。通过对该控制结构和控制算法的仿真表明,与常规的控制方法相比,采用混杂自动机控制结构和控制算法控制变速变桨风力机组,既提高了风能的利用效率,又很好地改善了风力机输出电能质量,实际控制效果良好。  相似文献   

12.
首先根据风力发电机的各个部分数学模型,用Matlab/Simulink进行模型搭建,然后根据功率变化设计模糊控制器对风力发电机的输出功率进行调整,并同PID控制器进行对比,仿真结果表明,模糊变桨距控制器具有良好的控制品质和鲁棒性。  相似文献   

13.
风力发电系统的恒功率非线性H∞鲁棒控制   总被引:1,自引:0,他引:1  
风力发电系统传统控制器的缺点在于, 基于某一工况点的局部线性化方法无法实现全局范围的精确控制, 且传统的控制理论无法应对内外干扰. 本文将精确反馈线性化方法与线性H∞理论相结合设计非线性H∞控制器. 首先用微分几何精确线性化方法将非线性风电模型全局线性化, 然后运用线性H∞控制理论对此线性系统设计控制器, 将两者结合有原风电系统的非线性H∞变桨距控制器. 最后对12 m/s至24 m/s阶跃风, 12 m/至22 m/s骤变风, 18 m/s至20 m/s随机风, 以及风力机转动惯量下降10%的情况进行仿真, 能实现风机转速及输出功率的恒定. 验证了该控制器在全风速段的精确控制, 并且具有良好鲁棒性.  相似文献   

14.
陈峰  郭家虎  王恒 《工矿自动化》2012,38(12):66-70
基于DIgSILENT/PowerFactory电力仿真软件建立了双馈感应发电机风力发电系统桨距控制数学模型、风力机数学模型和轴系数学模型,并对整个系统进行了仿真,模拟了有功功率、无功功率分别变化时以及网侧发生三相短路时整个系统的运行情况。仿真结果表明,该系统实现了功率的解耦控制以及在网侧三相短路情况下运行稳定,验证了模型的正确性,为风电场的仿真建模奠定了基础。  相似文献   

15.
为提高额定风速以上风力发电机组发电机转速和输出功率的稳定性,基于风电机组的运行特性,建立了风电机组变桨距控制仿真模型;针对遗传算法收敛速度慢的缺点,采用模糊遗传算法对PID控制器参数进行整定。仿真结果表明,基于模糊遗传的控制器不仅提高了遗传算法的收敛速度,且在动态性能及系统稳定性方面均优于遗传算法控制器。  相似文献   

16.
This paper proposes a control strategy to maximize the wind energy captured in a variable speed wind turbine,with an internal induction generator,at low to medium wind speeds.The proposed strategy cont...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号