首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
This paper develops a new active fault‐tolerant control system based on the concept of analytical redundancy. The novel design presented here consists of an observation filter–based fault detection and identification system integrated with a nonlinear model predictive controller. A number of observation filters are designed, integrated with the nonlinear controller, and tested before reaching the final design, which comprises an unscented Kalman filter for fault detection and identification together with a nonlinear model predictive controller to form an active fault‐tolerant control system.  相似文献   

2.
In this paper, a new strategy for fault‐tolerant control system design has been proposed using multiple controllers. The design of such controllers is shown to be unique in the sense that the resulting control system neither suffers from the problem of conservativeness of conventional passive fault‐tolerant control nor from the risk of instability associated with active fault‐tolerant control in case that an incorrect fault detection and isolation decision is made. In other words, the stability of the closed‐loop system is always ensured regardless of the decision made by the fault detection and isolation scheme. A correct decision will further lead to optimal performance of the closed‐loop system. This paper deals with the conflicting requirements among stability, redundancy, and graceful degradation in performance for fault‐tolerant control systems by using robust control techniques. A detailed design procedure has been presented with consideration of parameter uncertainties. Both total and partial actuator failures have been considered. This new control strategy has been demonstrated by controlling a McDonnell F‐4C airplane in the lateral‐direction through simulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is devoted to the design of a novel fault‐tolerant control (FTC) using the combination of a robust sliding‐mode control (SMC) strategy and a control allocation (CA) algorithm, referred to as a CA‐based sliding‐mode FTC (SMFTC). The proposed SMFTC can also be considered a modular‐design control strategy. In this approach, first, a high‐level SMC, designed without detailed knowledge of systems' actuators/effectors, commands a vector of virtual control signals to meet the overall control objectives. Then, a CA algorithm distributes the virtual control efforts among the healthy actuators/effectors using the real‐time information obtained from a fault detection and reconstruction mechanism. As the underlying system is not assumed to have a rank‐deficient input matrix, the control allocator module is visible to the SMC module resulting in an uncertainty. Hence, the virtual control, in this scheme, is designed to be robust against uncertainties emanating from the visibility of the control allocator to the controller and imperfections in the estimated effectiveness gain. The proposed CA‐based SMFTC scheme is a unified FTC, which does not need to reconfigure the control system in the case of actuator fault or failure. Additionally, to cope with actuator saturation limits, a novel redistributed pseudoinverse‐based CA mechanism is proposed. The effectiveness of the proposed schemes is discussed with a numerical example.  相似文献   

4.
For the non‐Gaussian stochastic distribution control system using Takagi‐Sugeno fuzzy model, a new fault diagnosis and sliding mode fault tolerant control algorithm is presented. First, a new adaptive fault diagnosis algorithm is adopted to diagnose the fault that occurred in the system, and the observation error system is proven to be uniformly bounded. Second, the sliding mode control algorithm is used to reconfigure the controller, based on the fault estimation information. The post‐fault probability density function can still track the given distribution, leading to fault tolerant control of non‐Gaussian stochastic distribution control systems using Takagi‐Sugeno fuzzy model. Finally, simulation results show the effectiveness of the proposed method.  相似文献   

5.
6.
The problem of active fault‐tolerant tracking control with control input and system output constraints is studied for a class of discrete‐time systems subject to sensor faults. A time‐varying fault‐tolerant observer is first developed to estimate the real system state from the faulty sensor output and control input signals. Then by using the estimated state at each time step, a model predictive control (MPC)‐based fault‐tolerant tracking control scheme is presented to guarantee the desired tracking performance and the given input and output constraints on the faulty system. In comparison with many existing fault‐tolerant MPC methods, its main contribution is that the proposed state estimator is designed by the simple and online numerical computation to tolerate the possible sensor faults, so that the regular MPC algorithm without fault information can be adopted for the online calculation of fault‐tolerant control signal. The potential recursive infeasibility and computational complexity due to the faults are avoided in the scheme. Additionally, the closed‐loop stability of the post‐fault system is discussed. Simulative results of an electric throttle control system verify the effectiveness of the proposed method.  相似文献   

7.
In this paper, we present a robust fault‐tolerant control scheme for constrained multisensor linear parameter‐varying systems, subject to bounded disturbances, that utilises multiple sensor fusion. The closed‐loop scheme consists of a tube model predictive control‐based feedback tracking controller and sensor‐estimate fusion strategy, which allows for the reintegration of previously faulty sensors. The active fault‐tolerant fusion‐based mechanism tracks the healthy‐faulty transitions of suitable residual variables by means of set separation and precomputed transition times. The sensor‐estimate pairings are then reconfigured based on available healthy sensors. Under the proposed scheme, robust preservation of closed‐loop system boundedness is guaranteed for a wide range of sensor fault situations. An example is presented to illustrate the performance of the fault‐tolerant control strategy.  相似文献   

8.
The objective of this paper is to develop performance‐based fault detection (FD) and fault‐tolerant control (FTC) schemes for a class of nonlinear systems. To this end, the representation forms of nonlinear systems with faults and the controller parameterization forms are studied first with the aid of the nonlinear factorization technique. Then, based on the stable kernel representation and the stable image representation of the faulty nonlinear system, the stability performance of the closed‐loop system is addressed, respectively. The so‐called fault‐tolerant margin is defined to evaluate the system fault‐tolerant ability. On this basis, two performance‐based FD schemes are developed aiming at detecting the system performance degradation caused by system faults. Furthermore, to recover the system stability performance, two performance‐based FTC strategies are proposed based on the information provided by the FD unit. In the end, a numerical example and a case study on the three‐tank system are given to demonstrate the proposed results.  相似文献   

9.
The problems of fault diagnosis and fault‐tolerant control are considered for systems with measurement delays. In contrast to the present fault diagnosis and fault‐tolerant control approaches, which consider only the input delay and/or state delay, the main contribution of this paper consists of proposing a new observer‐based reduced‐order fault diagnoser construction approach and a design approach to dynamic self‐restore fault‐tolerant control law for systems with measurement delays. First, the time‐delay system is transformed into a delay‐free system in form by a special functional‐based delay‐free transformation approach for measurement delays. Then, the fault diagnosis is realized online via the proposed reduced‐order fault diagnoser. Using the results of fault diagnosis, two dynamic self‐restore control laws are designed to make the system isolated from faults. A numerical example demonstrates the feasibility and validity of the proposed scheme. © 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
The attitude fault‐tolerant control problem for a satellite with reaction‐wheel failures, uncertainties, and unknown external disturbances is investigated in this paper. Firstly, an iterative learning observer (ILO) is proposed to achieve fault detection, isolation, and estimation. Secondly, based on the ILO, a third‐order sliding mode controller is proposed to stabilize the satellite attitude rapidly under unknown external disturbances and reaction‐wheel faults. Thirdly, the asymptotically stability of the ILO and the third‐order sliding mode controller is proved by using the Lyapunov stability theory. Finally, simulation results demonstrate that the proposed control scheme is more effective and feasible by comparing with other fault‐tolerant control approach.  相似文献   

11.
This paper describes 2 schemes for a fault‐tolerant control using a novel optimal sliding‐mode control, which can also be employed as actuator redundancy management for overactuated uncertain linear systems. By using the effectiveness level of the actuators in the performance indexes, 2 schemes for redistributing the control effort among the remaining (redundant or nonfaulty) set of actuators are constructed based on an ‐based optimal sliding‐mode control. In contrast to the current sliding‐mode fault‐tolerant control design methods, in these new schemes, the level of control effort required to maintain sliding is penalised. The proposed optimal sliding‐mode fault‐tolerant control design schemes are implemented in 2 stages. In the first stage, a state feedback gain is derived using an LMI‐based scheme that can assign a number of the closed‐loop eigenvalues to a known value whilst satisfying performance specifications. The sliding function matrix related to the particular state feedback derived in the first stage is obtained in the second stage. The difference between the 2 schemes proposed for the sliding‐mode fault‐tolerant control is that the second one includes a separate control allocation module, which makes it easier to apply actuator constraints to the problem. Moreover, it will be shown that, with the second scheme, we can deal with actuator faults or even failures without controller reconfiguration. We further discuss the advantages and disadvantages of the 2 schemes in more details. The effectiveness of the proposed schemes are illustrated with numerical examples.  相似文献   

12.
The problem of fault‐tolerant attitude tracking control for rigid spacecraft in the presence of inertia uncertainties, actuator faults, and external disturbances is investigated in this paper. A novel adaptive finite‐time continuous fault‐tolerant control strategy is developed by combining the fast nonsingular terminal sliding mode surface and the adaptive multivariable super‐twisting algorithm, which improves the robustness while preserving high accuracy and finite‐time convergence. The main features of the control strategy are the double‐layer adaptive algorithm based on equivalent control, which ensures nonoverestimation of the control gain and the continuous controller, which maintains better property of chattering reduction. Finally, the efficiency of the proposed controller is illustrated by numerical simulations.  相似文献   

13.
This paper investigates the fault‐tolerant control (FTC) problem for a class of hybrid nonlinear impulsive systems. Two kinds of faults are considered: continuous faults that affect each mode and discrete faults that affect the impulsive switching. The FTC strategy is based on the trade‐off between the frequency of switching and the decreasing rate of Lyapunov functions along the solution of the system, which maintains the stability of overall hybrid impulsive systems in spite of these two kinds of faults. A switched reluctance motor example is taken to illustrate the applicability of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a robust actuator‐fault‐tolerant control (FTC) system is proposed for thrust‐vectoring aircraft (TVA) control. To this end, a TVA model with actuator fault dynamics, disturbances, and uncertain aerodynamic parameters is described, and a local fault detection and identification (FDI) mechanism is proposed to locate and identify faults, which utilizes an adaptive sliding‐mode observer (SMO) to detect actuator faults and two SMOs to identify and estimate their parameters. Finally, a fault‐tolerant controller is designed to compensate for these actuator faults, disturbances, and uncertain aerodynamic parameters; the approach combines back‐stepping control with fault parameters and a high‐order SMO. Furthermore, the stability of the entire control system is validated, and simulation results are given to demonstrate the effectiveness and potential for this robust FTC system.  相似文献   

15.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

16.
This paper addresses the problem of fault‐tolerant control allocation for input affine nonlinear systems. The proposed scheme is divided in three main tasks: fault detection and estimation using a nonlinear observer, fault isolation through a bank of unknown input observers with a resetting policy to reduce the effects of nonlinearities and control reconfiguration based on reduced order allocation. Analytical results regarding the isolability and reconfigurability of actuator faults are derived and a simulation example is used to illustrate the the proposed fault tolerant control methodology.  相似文献   

17.
This article investigates the active fault‐tolerant consensus problem for Lipschitz nonlinear multiagent systems under detailed balanced directed graph and actuator faults. First, a fault detection filter for each agent is designed, and all agents can be divided into two categories: healthy agents and possibly faulty agents. Second, fully distributed adaptive fault‐tolerant consensus protocols for healthy and possibly faulty agents are proposed to achieve state consensus. Third, based on the fault detection method and fault‐tolerant consensus protocols, active fault‐tolerant consensus algorithms are given. Simulation examples are presented to verify the effectiveness of the proposed active fault‐tolerant algorithms.  相似文献   

18.
The purpose of fault diagnosis of stochastic distribution control systems is to use the measured input and the system output probability density function to obtain the fault estimation information. A fault diagnosis and sliding mode fault‐tolerant control algorithms are proposed for non‐Gaussian uncertain stochastic distribution control systems with probability density function approximation error. The unknown input caused by model uncertainty can be considered as an exogenous disturbance, and the augmented observation error dynamic system is constructed using the thought of unknown input observer. Stability analysis is performed for the observation error dynamic system, and the H performance is guaranteed. Based on the information of fault estimation and the desired output probability density function, the sliding mode fault‐tolerant controller is designed to make the post‐fault output probability density function still track the desired distribution. This method avoids the difficulties of design of fault diagnosis observer caused by the uncertain input, and fault diagnosis and fault‐tolerant control are integrated. Two different illustrated examples are given to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
针对现有WSNs故障检测算法存在的故障分类检测率低、耗时长、节点能耗控制差等问题,提出一种全神经网络增强故障预警与检测算法。全神经网络的神经元节点与临近层的节点连接,形成具有强大故障数据训练功能的深度网络结构,选择平滑性更好的sigmoid函数作为模型的激活函数,并基于感知机合理调节相邻两个隐含层之间的阈值权重,降低模型的训练损失;采用Adam优化算法抑制模型的梯度膨胀和梯度消失等异常情况,并消除训练中产生的数据冗余,以降低故障数据训练中产生的虚预警。实验结果显示:提出算法的总体故障检测率和不同类型故障的分类检测率都优于传统算法,此外全神经网络增强算法在节点故障检测耗时和能耗控制方面,也具有显著优势。  相似文献   

20.
A new fault‐tolerant control based on augmented state estimator and probability density function (PDF) is proposed for a stochastic distribution system (SDS) with time‐delay and additive fault. First, a system model based on a PDF with the additive fault is constructed by using square‐root rational B‐spline neural networks. Second, an augmented system is obtained by converting the additive fault as an auxiliary state variable. In this framework, a robust augmented state estimator is designed to estimate the original states and the additive fault simultaneously. Then, based on the obtained estimation of fault, a delay‐dependent fault‐tolerant control is designed to compensate the fault. Finally, the numerical simulations show the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号