首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
摘要: 为了提高移动机器人在作业过程中获得现场环境地图的效率,提出了利用BIM技术建立导航地图的方式,获取IFC信息映射到二维栅格,从而快速构建地图。对于室内移动机器人在移动过程中能更快更好的到达目标点的问题,首先对传统A*算法做改进,将原有的8邻域搜索扩展为48邻域搜索,增加了搜索方向,优化了搜索角度。同时考虑了机器人的安全性,对规划路径进行了改进,使得规划的路径与障碍物保持了一定距离。其次,为了避开场地出现的动态障碍物,采用将改进的A*算法与动态窗口法融合,在保证全局路径最优的基础上,实现避障效果。通过实验仿真,表明了改进的A*算法比传统A*的算法在运行时间上快了2倍以上,路径转折点的角度差比原来减少了28%以上,路径长度上更短且不再紧贴障碍物。而融合算法比改进的A*算法在路径平滑性上有所提高,能及时避开随机障碍物,更加适用于环境变化的室内场景。  相似文献   

2.
煤矿履带式定向钻机路径规划过程中存在机身体积约束和实际场景下的行驶效率需求,而常用的A*算法搜索速度慢、冗余节点多,且规划路径贴近障碍物、平滑性较差。提出一种以改进A*算法规划全局路径、融合动态窗口法(DWA)规划局部路径的煤矿履带式定向钻机路径规划算法。考虑定向钻机尺寸影响,在传统A*算法中引入安全扩展策略,即在定向钻机和巷道壁、障碍物之间加入安全距离约束,以提高规划路径的安全性;对传统A*算法的启发函数进行自适应权重优化,同时将父节点的影响加入到启发函数中,以提高全局路径搜索效率;利用障碍物检测原理对经上述改进后的A*算法规划路径剔除冗余节点,并使用分段三次Hermite插值进行二次平滑处理,得到全局最优路径。将改进A*算法与DWA融合,进行煤矿井下定向钻机路径规划。利用Matlab对不同工况环境下定向钻机路径规划算法进行仿真对比分析,结果表明:与Dijkstra算法和传统A*算法相比,改进A*算法在保证安全距离的前提下,加快了搜索速度,搜索时间分别平均减少88.5%和63.2%,且在一定程度上缩短了规划路径的长度,路径更加平滑;改进A*算法与DWA融合算法可有效躲避改进A*算法规...  相似文献   

3.
为了解决传统的A*算法搜索自由度低,规划出的路径长度长且转角大的问题,提出了一种改进的A*算法.改进算法将传统的8邻域搜索拓展到24邻域,并利用引导向量优化邻域数量,提升搜索效率;采用路径平滑算法消除路径中的冗余节点,优化平滑路径.在不同障碍率、不同栅格地图等12种模拟场景下的100次有效实验与真实地图下的20次有效实...  相似文献   

4.
针对复杂海洋环境下水面舰艇航路规划时出现的大地图寻路速度慢、航路安全性差、航路不平滑等难题,结合电子海图提出了一种改进A*算法的航路规划方法。提出一种自适应的改进启发函数,在搜索节点时加入目标节点的方位信息,加快了A*算法搜索路径的速度;加入迫使航路远离障碍物的安全距离,解决了传统A*算法沿障碍物边缘寻路导致航路安全性差的问题;对原始航路进行二次优化,在对原始路径提取转折点后,通过判断任意两个转折节点的直线可达性,将转折节点之间的实际距离转化为距离矩阵,使用Dijkstra算法优选出航路长度更短的关键转折点,最终使用二阶贝塞尔曲线对航路转折处进行平滑处理,以满足航路平滑且易跟随的要求。仿真实验表明,相对于传统A*算法,改进算法规划的路径具有寻路速度更快、航路距离更短、航路安全性更高的特点。  相似文献   

5.
传统批通知树(batch informed trees,BIT*)算法结合了RRT*算法和A*算法的优势,但是该算法在复杂环境下无法躲避未知的动态障碍物,无法完成动态路径规划。针对该问题,提出了一种将改进的BIT*算法和改进的DWA算法相融合的算法。在传统BIT*算法的基础上对路径进行拉伸优化,提取关键转折点,减少路径长度;对传统DWA算法的距离评价函数进行改进、引入轨迹点评价函数,避免局部规划过分偏离,也减少了已知障碍物对路径的影响;将改进的BIT*算法与改进的DWA算法相融合,将提取的关键转折点作为DWA的中间目标点,弥补全局规划算法无法躲避动态障碍物的缺点以及局部规划算法全局能力低下的缺点。在动静态地图中对RRT*算法、BIT*算法、DWA算法、改进BIT*算法以及融合算法进行仿真实验,仿真结果表明:在复杂环境中,改进的BIT*算法具有更短的路径和更少的拐点;与传统的DWA算法相比,融合算法规划的路线更平滑,机器人既能实时动态避障抵达终点,又能更加贴近全局路径,保证路线全局最优。  相似文献   

6.
一种可搜索无限个邻域的改进A*算法   总被引:1,自引:0,他引:1  
传统A*算法在栅格地图上进行路径规划时,求解得到的路径长度不是最短并且转折点较多.针对这些不足,提出了一种改进A*算法,将传统A*算法的可搜索邻域个数从离散的8个拓展为无限个,可以沿任意方向进行搜索.这样不仅求解出来的路径长度更短,并且大大降低了其转折点的个数.该算法被应用于自主研发的"智能先锋"号系列无人驾驶车辆上,实车试验以及它们在"中国智能车未来挑战赛"中的优异表现证明该方法能够在栅格地图中求解出一条更优的可行驶路径,可以显著提升无人驾驶车辆行驶的效率和平稳性.  相似文献   

7.
传统A*算法是移动机器人全局路径规划的常用算法之一,但是算法搜索效率低、规划路径转折点多、面对复杂环境中随机出现的动态障碍物无法实现动态路径规划。针对这些问题,在考虑全局最优的基础上将改进A*与DWA算法融合,量化环境中的障碍物信息,根据此信息调节A*算法启发函数的权重,提高算法的效率和灵活性。基于Floyd算法思想设计路径节点优化算法,删除冗余节点,减少转折,提高路径平滑度。基于全局最优设计DWA算法的动态窗口评价函数,用于区分已知障碍物和未知动态、静态障碍物,提取改进A*算法规划路径的关键点作为DWA算法的临时目标点,在全局最优的基础上实现了改进A*与DWA算法融合。实验结果表明,在复杂环境中,融合算法规划路径既能保证全局最优,又能及时有效地躲避环境中出现的动静态障碍物,实现复杂环境中的动态路径规划。  相似文献   

8.
针对传统A*算法在场景较大的栅格地图路径规划时,很多冗余节点的遍历导致寻路算法内存消耗大、计算速度慢等问题,提出了一种对A*算法的改进策略.首先,改进启发函数的具体计算方式,利用切比雪夫距离替代欧氏距离使启发式函数精确地等于实际最佳路径,减少A*节点的拓展数量;其次,使用跳点搜索(JPS)策略筛选出跳点添加到OpenList和ClosedList代替A*算法中大量不必要的邻节点,通过跳点实现较长距离的跳跃,从而减少内存占用以及对节点的评估,直到生成最终路径.为了验证A*算法改进后的效果,在五种尺寸的二维栅格地图中进行仿真测试,结果表明,改进后的A*算法减少了大量寻路过程评估的节点,提高了寻路速度,并且随着地图尺寸的增加,改进后的A*算法能将寻路速度提高一个数量级以上.最后,将改进后的算法应用在移动机器人路径规划器上进行实验,在同一规划任务下,JPS策略下改进的A*算法较传统A*算法,路径搜索耗费时间减少了92.2%,拓展的节点减少了97.37%,能够满足大场景下移动机器人快速路径规划的要求.  相似文献   

9.
为了解决传统A*算法规划路径时未考虑到障碍物分布对路径选取的影响,文中提出了一种改进的A*算法.将人工势场的思想与传统的A*算法相结合,对栅格地图中的障碍物赋予斥力场函数并计算周围栅格的斥力大小,进行路径搜索时将栅格的斥力大小引进到A*算法的评价函数当中以改进A*算法的搜索能力.通过MATLAB仿真和Turtlebot机器人的实验结果表明,与传统的A*算法相比,改进后的新算法与人工势场算法相结合,规划出了更优的路径,提高了路径规划效率,且搜索速度提高了 13.40%~29.68%,路径长度缩短了 10.56%~24.38%,路径节点数减少了 6.89%~27.27%,因此,改进的A*算法的优化效果明显,具有有效性和可行性.  相似文献   

10.
为了解决传统A*算法规划路径时未考虑到障碍物分布对路径选取的影响,文中提出了一种改进的A*算法.将人工势场的思想与传统的A*算法相结合,对栅格地图中的障碍物赋予斥力场函数并计算周围栅格的斥力大小,进行路径搜索时将栅格的斥力大小引进到A*算法的评价函数当中以改进A*算法的搜索能力.通过MATLAB仿真和Turtlebot机器人的实验结果表明,与传统的A*算法相比,改进后的新算法与人工势场算法相结合,规划出了更优的路径,提高了路径规划效率,且搜索速度提高了 13.40%~29.68%,路径长度缩短了 10.56%~24.38%,路径节点数减少了 6.89%~27.27%,因此,改进的A*算法的优化效果明显,具有有效性和可行性.  相似文献   

11.
快速搜索随机树(Rapidly-exploring random Tree Star,RRT*)算法在移动机器人实际应用中规划路径在转向部分存在较多的冗余转折点,导致移动机器人在移动转向过程中出现多次停顿与转向,为剔除规划路径中的冗余路径点,提高机器人移动流畅性,提出一种改进的 RRT*算法。算法将局部逆序试连法引入移动机器人路径规划,在确保RRT*算法概率完备性和渐进最优性的前提下,剔除规划路径中的冗余路径节点,使最终路径更加接近最短路径。通过MATLAB仿真实验证明,规划路径平均长度缩短4%,算法耗时缩短35%,改进后的RRT*算法能缩短规划路径且转向部分路径更加平滑。最后,使用改进后的RRT*算法在室内环境下进行移动机器人路径规划实验。实验结果表明:规划路径上无冗余路径点,且移动机器人沿路径移动流畅。  相似文献   

12.
针对传统A*算法自身节点搜索策略存在路径转折点多、转折角度大、可行路径不是理论上的最优路径等缺点,将传统A*算法3×3的搜索邻域扩展为7×7,同时去除扩展邻域同方向的多余子节点,改进为7×7的A*算法,消除了传统A*算法的3×3邻域搜索和节点移动方向仅为[0.25π]的整数倍的限制,优化了搜索角度。其次,针对移动机器人在复杂环境下动态路径规划问题,将改进7×7的A*算法与动态窗口算法进行融合,设计了一种全局最优路径的动态窗口评价函数,综合考虑移动速度、转角平滑度、安全性等因素,将改进7×7的A*算法与动态窗口法的融合算法与多种算法仿真比较,结果表明:改进7×7的A*算法与动态窗口法的融合算法更具有高效性和可行性。  相似文献   

13.
针对移动机器人在复杂环境下(包含静态和动态环境)的路径规划效率低的问题,提出了一种改进的A*算法与动态窗口法相结合的混合算法。针对传统A*算法安全性不足的问题,采用障碍规避策略,优化节点的选择方式,增加路径的安全性;针对转折点多的问题,采用递归二分法优化策略,去除冗余节点,减少转弯次数;针对静态环境下路径平滑性不足的问题,采用动态内切圆平滑策略将折线角优化成弧度角,以增加路径的平滑性。对于传统动态窗口法的目标点附近存在障碍物时规划效果不好和容易在凹型槽类障碍物中陷入局部最优的问题,在原有的评价函数中引入了距离偏差和轨迹偏差。最后,对所提的改进A*算法和混合算法分别在静态和动态环境下与其他算法进行仿真比较。从结果可以看出,与传统混合算法相比,临时障碍环境下,路径长度和运行时间分别缩短了13.2%和65.8%;移动障碍环境下,路径长度和运行时间分别缩短了13.9%和44.9%,所提的算法提高了在复杂环境中规划路径的效率。  相似文献   

14.
无人机在有障碍物的三维空间环境中飞行,采用常规A*算法进行避障航线的规划存在搜索节点多、搜索区域大、搜索时间长、搜索效率低、生成的航线拐角多且含有大量非必要冗余航点、没有考虑无人机自身体积与尺寸而引发的飞行中与障碍物边界碰撞的航线不安全等问题。因此,设计一种改进A*算法,首先,考虑无人机本身体积与尺寸,提出一种消除边界碰撞事故的子节点扩展方法;其次,改进评价函数,减少往复搜索次数,缩小搜索区域面积,提高搜索效率;然后,根据Floyd思想,对生成的航线进行简化处理,消除航线中的冗余航路点,减少航线转角数量,达到简化航线并改善航线平滑度的效果;最后,非线性仿真及飞行试验表明了改进的A*算法生成的航线更加安全、高效,并使无人机的飞行连续和顺畅。  相似文献   

15.
标准A*算法存在着无法考虑移动机器人运动特性及处理后的路径不利于移动机器人运动等问题。针对这一问题提出了一种新改进A*算法,通过环境信息引入障碍物权重系数来改进算法的启发函数并进行全局路径规划;优化搜索节点的选取方式和设定障碍物与路径之间的安全距离;基于对移动机器人的运动特性的考虑优化其路径,并在不同环境地图中与其他算法进行仿真实验对比分析。相关实验表明:基于新改进A*算法规划的路径始终与障碍物保持一定的安全距离;改进A*算法在时间上相比标准A*算法平均减少了80%,路径长度平均减少了2%,路径转角平均降低了82%。改进后算法相比其他算法在时间、搜索节点以及平滑度上有很大的改进,融合机器人环境信息和运动特性的规划路径算法可为移动机器人的路径规划提供一种新的方法。  相似文献   

16.
童心赤  张华军  郭航 《计算机应用》2005,40(11):3373-3378
针对海洋环境下无人水面艇路径(USV)规划安全性与平滑性问题,提出一种多方向A*路径规划算法以获得全局最优路径。首先,结合电子海图生成栅格化环境信息,并根据安全航行距离约束建立USV安全区域模型,在传统A*算法基础上设计一种带安全距离约束的A*启发函数来保证生成的路径节点的安全;其次,改进传统A*算法的八方向搜索模式,提出一种多方向搜索模式来调整生成路径中的冗余点与拐点;最后,采用路径平滑算法对路径拐点进行平滑处理以获得满足实际航行要求的连续平滑路径。在仿真实验中,改进A*算法规划的路径距离为7 043 m,相较于Dijkstra算法、传统A*四方向搜索算法和传统A*八方向搜索算法分别降低了9.7%、26.6%和7.9%。仿真结果表明改进后的多方向A*搜索算法能够有效减小路径距离,更适用于USV路径规划问题。  相似文献   

17.
A*算法广泛应用于移动机器人路径规划中,而传统A*算法在寻路时,普遍存在搜索时间较长、效率低下等问题,因此,采用双向搜索的方式,对传统A*算法加以改进,该算法在路径规划过程中,可同时进行正反向路径搜索,同时采用正反向搜索交替机制,保证了最终目标节点搜索在连线中点区域内相遇,从而缩短了寻路计算时间。在MATLAB平台上,针对改进后的A*算法进行仿真实验,结果证明,双向A*算法减少了规划时间,且可生成最优路径。最后,将该算法应用到基于开源机器人操作系统的Turtlebot2移动平台上,进行现场实验,实验结果表明,双向A*算法减少了寻路计算时间,从而使得路径搜索效率得到显著提升,且规划路径合理,满足路径规划要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号