首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于深度自编码器的网络表示,可以捕获高度非线性的网络结构,但当链接稀疏时学到的表示不够准确。针对这一问题,提出一种基于深度自编码的局部增强属性网络表示学习模型,以提高表示学习的准确度。该模型首先利用链接与属性特征,采用多个深度自编码器,学习保持网络拓扑结构及属性特征的低维网络表示。之后,基于节点间近邻结构及属性相似性,对学出的低维网络表示进行节点约束,实现网络局部结构增强,达到最大程度保持原始结构信息及属性特征的目的。在五个真实属性网络上的实验结果表明,提出的模型在聚类与分类任务中,效果均优于目前流行的表示学习方法。  相似文献   

2.
《计算机科学与探索》2019,(10):1733-1744
网络表示学习的目标是将网络节点映射到一个低维的向量空间中,然后利用已有的机器学习方法解决诸如节点分类、链接预测、社团挖掘和推荐等下游应用任务。通常网络中的节点携有属性信息,与结构信息具有一定的相关性,将这些信息融入到网络表示学习过程中,有助于提升下游任务的性能。但是针对不同的应用场景,结构和属性信息并不总是线性相关,而且它们都是高度非线性的数据。提出一种基于变分自编码器的网络表示学习方法VANRL。变分自编码器是一种深度神经网络,它不仅可以捕获结构和属性非线性相似性,还可以学习到数据的分布。针对不同的应用任务,灵活地组合结构信息和属性信息,使学习到的网络节点表示达到令人满意的性能。在四个网络(包括两个社交网络,两个引用网络)上的实验结果表明,VANRL可以在节点分类和链路预测任务中获得相对显著的效果。  相似文献   

3.
在线社交平台产生大量可建模为属性网络的数据,SNE(social network embedding)表示学习模型可学到属性网络的潜在低维表示,为进一步的实际应用提供有效特征。但是SNE未考虑保持网络的潜在聚类结构,导致学到的特征对聚类效果不佳。针对上述问题进行研究,提出了一种保持聚类结构的属性网络表示学习模型(attributed network embedding with self cluster,ANESC),其使用前馈神经网络建模,以属性网络节点的one-hot表示和属性信息作为输入,经过多隐层学习节点的低维表示,使其在输出层保持节点的邻居拓扑结构和潜在聚类结构。在五个真实属性网络上的实验结果表明,相比SNE,ANESC学到的表示在聚类任务上NMI值提高5%~11%,在分类任务上准确率提高0.3%~7%。  相似文献   

4.
属性网络不仅具有复杂的拓扑结构,其节点还包含丰富的属性信息.属性网络表示学习方法同时提取网络拓扑结构和节点的属性信息来学习大型属性网络的低维向量表示,在节点分类、链路预测和社区识别等网络分析技术方面具有非常重要和广泛的应用.文中首先根据属性网络的拓扑结构得到网络的结构嵌入向量;接着通过全局注意力机制来学习相邻节点的属性信息,先用卷积神经网络对节点的属性信息作卷积操作得到隐藏向量,再对卷积的隐藏向量生成全局注意力的权重向量和相关性矩阵,进而得到节点的属性嵌入向量;最后将结构嵌入向量和属性嵌入向量连接得到同时反映网络结构和节点属性的联合嵌入向量.在3个真实数据集上,将提出的新算法与当前的8种知名网络表示学习模型在链路预测和节点分类等任务上进行比较,实验结果表明新算法具有良好的属性网络表示效果.  相似文献   

5.
杜航原  王文剑  白亮 《软件学报》2023,34(6):2749-2764
网络表示学习被认为是提高信息网络分析效率的关键技术之一,旨在将网络中每个节点映射为低维隐空间中的向量表示,并使这些向量高效的保持原网络的结构和特性.近年来,大量研究致力于网络拓扑和节点属性的深度挖掘,并在一些网络分析任务中取得了良好应用效果.事实上,在这两类关键信息之外,真实网络中广泛存在的伴随信息,反映了网络中复杂微妙的各种关系,对网络的形成和演化起着重要作用.为提高网络表示学习的有效性,提出了一种能够融合伴随信息的网络表示学习模型NRLIAI.该模型以变分自编码器(VAE)作为信息传播和处理的框架,在编码器中利用图卷积算子进行网络拓扑和节点属性的聚合与映射,在解码器中完成网络的重构,并融合伴随信息对网络表示学习过程进行指导.该模型克服了现有方法无法有效利用伴随信息的缺点,同时具有一定的生成能力,能减轻表示学习过程中的过拟合问题.在真实网络数据集上,通过节点分类和链路预测任务对NRLIAI模型与几种现有方法进行了对比实验,实验结果验证了该模型的有效性.  相似文献   

6.
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE).利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入.AE对GCN捕获的K阶邻域信息进行特征提取和非线性降维,并结合Laplacian特征映射保留节点的团簇结构信息.引入集成学习方法联合训练GCN和AE,使模型习得的节点低维向量表示能同时保留网络结构信息和节点特征信息.在5个真实数据集上的广泛评估表明,文中模型习得的节点低维向量表示可以有效保留网络的结构和节点特征信息,并在节点分类、可视化和网络重构任务上性能较优.  相似文献   

7.
网络表示学习是一个重要的研究课题,其目的是将高维的属性网络表示为低维稠密的向量,为下一步任务提供有效特征表示。最近提出的属性网络表示学习模型SNE(Social Network Embedding)同时使用网络结构与属性信息学习网络节点表示,但该模型属于无监督模型,不能充分利用一些容易获取的先验信息来提高所学特征表示的质量。基于上述考虑提出了一种半监督属性网络表示学习方法SSNE(Semi-supervised Social Network Embedding),该方法以属性网络和少量节点先验作为前馈神经网络输入,经过多个隐层非线性变换,在输出层通过保持网络链接结构和少量节点先验,学习最优化的节点表示。在四个真实属性网络和两个人工属性网络上,同现有主流方法进行对比,结果表明本方法学到的表示,在聚类和分类任务上具有较好的性能。  相似文献   

8.
属性网络表示学习旨在结合结构信息与属性信息为网络中的节点学习统一的向量表示。现有的属性网络表示学习方法在学习属性信息时与其互补的结构信息增强不足,从而影响最终表示。针对这一问题,提出一种结构增强的属性网络表示学习方法,以提高表示质量。该方法基于网络归一化邻接矩阵和属性矩阵通过自动编码器提取增强网络全局结构特性的属性信息,使用skip-gram模型捕捉局部结构信息,引入一个联合损失函数使结构信息与属性信息在同一向量空间中得以表示。在三个真实属性网络数据上进行节点分类和链路预测实验,效果较目前流行的网络表示学习方法优势明显。  相似文献   

9.
针对节点对的嵌入特征随时间演化而发生的骤变问题,提出了一种基于深度循环时序受限玻尔兹曼机(RTRBM)的链路预测方法。在样本集构建方面,利用网络嵌入学习自动化提取网络节点特征,并以嵌入特征空间中两个节点间的距离作为节点对样本属性;在学习模型选择方面,将RTRBM模型应用于动态网络链路预测,考虑到短时间间隔内节点在嵌入特征空间中的位置相对稳定,对RTRBM的能量函数及训练过程进行了改进。此外,为了提取节点对的深度时序特征,结合深度学习理论,通过纵向地堆叠多个改进后的RTRBM构成深度学习结构,并利用Logistic回归分类器对动态网络中的链路关系进行分类和预测。实验结果表明,改进后的RTRBM及其深度学习模型相比于其他方法在AUC指标下有着明显的性能提升。  相似文献   

10.
链路预测作为复杂网络分析的一项重要任务,其目的是寻找节点间缺失(新)的链路,识别虚假交互,对于挖掘和分析网络的演化,重塑网络模型具有重要意义.传统的链路预测方法多数采用拓扑结构信息、节点的属性信息和图的结构特征.应用这些特征等外部信息可以得到很好的预测效果.本文从信息学的角度全面分析、回顾和讨论了复杂网络链路预测的发展现状,提出了链路预测技术和问题的系统分类.首次将分层的思想引入链路预测分类体系中,把当前的链路预测方法分为基于监督学习的技术、基于半监督学习的技术、基于无监督学习的技术和基于强化学习的技术.对每种技术的优缺点、复杂性、所使用的具体特征,开源实现及应用建议进行了详细的分析.最后,讨论了当前复杂网络链路预测技术未来的发展方向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号