首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
随着许多计算密集型应用的出现,移动设备因其有限的计算能力无法满足用户时延、能耗等需求。移动边缘计算(MEC)通过无线信道将用户的任务计算卸载到MEC服务器,从而显著减少任务响应时延和能耗。针对多用户任务卸载问题,提出了基于稳定匹配的多用户任务卸载策略(MUTOSA),在保证用户的时延要求下达到能耗最小化。首先,在综合考虑时延与能耗的基础上,对独立任务场景下的多用户任务卸载问题进行建模;然后,基于博弈论的稳定匹配中的延迟接收思想,提出了一种调整策略;最后,通过不断迭代,解决了多用户任务卸载问题。实验结果表明,该策略相较于基准策略和启发式策略能够满足更多用户的时延要求,平均提高约10%的用户满意度,并能减少约50%的用户设备总能耗。所提策略在保证用户时延要求的同时有效地减少了能耗,可以有效地提高用户对于时延敏感型应用的体验。  相似文献   

2.
李余  何希平  唐亮贵 《计算机应用》2022,42(5):1538-1546
随着计算密集和时延敏感类应用的激增,移动边缘计算(MEC)被提出应用在网络边缘为用户提供计算服务。针对基站(BS)端边缘服务器计算资源有限以及网络边缘用户远距离计算卸载的时延较长等问题,提出了基于终端直通(D2D)通信的多用户计算卸载资源优化决策,将D2D融入MEC网络使用户以D2D方式直接卸载任务到相邻用户处执行,从而能够进一步降低卸载时延和能耗。首先,以最小化包括时延和能耗的系统计算总开销为优化目标,建模多用户计算卸载和多用户计算资源分配的联合优化问题;然后,将求解该问题看作是一个D2D配对过程,并提出基于稳定匹配的低复杂度的多用户计算卸载资源优化决策算法;最后,迭代求解D2D卸载的优化分配决策。通过理论证明分析了所提算法的稳定性、最优性和复杂度等特性。仿真结果表明,所提算法相较于随机匹配算法能够有效降低10%~33%的系统计算总开销,并且其性能非常接近最优的穷举搜索算法。可见,所提基于D2D卸载的决策有利于改善时延和能耗开销性能。  相似文献   

3.
刘伟  黄宇成  杜薇  王伟 《软件学报》2020,31(6):1889-1908
云计算和移动互联网的不断融合,促进了移动云计算的产生和发展,但是其难以满足终端应用对带宽和延迟的需求.移动边缘计算在靠近用户的网络边缘提供计算和存储能力,通过计算卸载,将终端任务迁移至边缘服务器上面执行,能够有效降低应用延迟和节约终端能耗.然而,目前针对移动边缘环境任务卸载的主要工作大多考虑单个移动终端和边缘服务器资源无限的场景,这在实际应用中存在一定的局限性.因此,针对边缘服务器资源受限下的任务卸载问题,提出了一种面向多用户的串行任务动态卸载策略(multi-user serial task dynamic offloading strategy,简称MSTDOS).该策略以应用的完成时间和移动终端的能量消耗作为评价指标,遵循先来先服务的原则,采用化学反应优化算法求解,充分考虑多用户请求对服务器资源的竞争关系,动态调整选择策略,为应用做出近似最优的卸载决策.仿真结果表明,MSTDOS策略比已有算法能够取得更好的应用性能.  相似文献   

4.
最佳卸载策略直接影响移动计算任务卸载的时延与能耗,因此提出基于强化学习方法的移动边缘计算任务卸载方法。首先对移动设备的计算任务卸载形式展开具体分析,并基于分析结果获取计算任务卸载能量消耗、发射功率、传输速率等相关参数值,以此建立移动边缘计算任务卸载模型。最后基于建立的卸载模型结合Q-Learning算法对计算任务实施强化学习,找出计算任务的最佳卸载策略,从而实现移动边缘计算任务的实时卸载。实验结果表明,使用强化学习方法开展移动边缘计算任务卸载时,卸载能耗低、时延小。  相似文献   

5.
随着移动边缘计算的兴起,如何处理边缘计算任务卸载成为研究热点问题之一。针对多任务-多边缘服务器的场景,本文首先提出一种基于能量延迟优化的移动边缘计算任务卸载模型,该模型考虑边缘设备的剩余电量,使用时延、能耗加权因子计算边缘设备的总开销,具有延长设备使用时间、减少任务卸载时延和能耗的优点。进一步提出一种基于改进遗传算法的移动边缘计算任务卸载算法,将求解最优卸载决策的问题转化为求解种群最优解的问题。对比仿真实验结果表明,本文提出的任务卸载模型和算法能够有效求解任务卸载问题,改进后的任务卸载算法求解更精确,能够避免局部最优解,利于寻找最优任务卸载决策。  相似文献   

6.
近年来, AR/VR、在线游戏、4K/8K超高清视频等计算密集且时延敏感型应用不断涌现, 而部分移动设备受自身硬件条件的限制, 无法在时延要求内完成此类应用的计算, 且运行此类应用会带来巨大的能耗, 降低移动设备的续航能力. 为了解决这一问题, 本文提出了一种Wi-Fi网络多AP (access point)协作场景下边缘计算卸载和资源分配方案. 首先, 通过遗传算法确定用户的任务卸载决策. 随后, 利用匈牙利算法为进行任务卸载的用户分配通信资源. 最后, 根据任务处理时延限制, 为进行任务卸载的用户分配边缘服务器计算资源, 使其满足任务处理时延限制要求. 仿真结果表明, 所提出的任务卸载与资源分配方案能够在满足任务处理时延限制的前提下有效降低移动设备的能耗.  相似文献   

7.
针对移动边缘计算(MEC)中用户任务处理时延与能耗过高的问题,提出了“云-边-端”三层MEC计算卸载结构下的资源分配与卸载决策联合优化策略。首先,考虑系统时延与能耗,将优化问题规划为系统总增益(任务处理时延与能耗相对减少的加权和)最大化问题;其次,为用户任务设置优先级,并根据任务数据量初始化卸载决策方案;然后,采用均衡传输性能的信道分配算法为卸载任务分配信道资源,对于卸载至同一边缘服务器上的任务以最大化资源收益为目标进行资源竞争,实现计算资源最优配置;最后,基于博弈论证明优化问题为关于卸载决策的势函数,即存在纳什均衡,并利用迭代增益值比较法得到了纳什均衡下的卸载决策方案。仿真结果表明,所提联合优化策略在满足用户处理时延要求的情况下最大化系统总增益,有效地提高了计算卸载的性能。  相似文献   

8.
移动边缘计算(MEC)系统中,因本地计算能力和电池能量不足,终端设备可以决定是否将延迟敏感性任务卸载到边缘节点中执行。针对卸载过程中用户任务随机产生且系统资源动态变化问题,提出了一种基于异步奖励的深度确定性策略梯度(asynchronous reward deep deterministic policy gradient,ARDDPG)算法。不同于传统独立任务资源分配采用顺序等待执行的策略,该算法在任务产生的时隙即可执行资源分配,不必等待上一个任务执行完毕,以异步模式获取任务计算奖励。ARDDPG算法在时延约束下联合优化了任务卸载决策、动态带宽分配和计算资源分配,并通过深度确定性策略梯度训练神经网络来探索最佳优化性能。仿真结果表明,与随机策略、基线策略和DQN算法相比,ARDDPG算法在不同时延约束和任务生成率下有效降低了任务丢弃率和系统的时延和能耗。  相似文献   

9.
方海  赵扬  高媛  杨旭 《计算机工程与科学》2022,44(11):1951-1958
针对高低轨卫星网络协同边缘计算的卸载决策问题,提出了一种考虑任务依赖的联合计算资源、无线资源分配与任务调度的卫星网络边缘计算卸载决策算法。首先,将任务卸载问题建模为最小化任务延迟和能量消耗的联合优化问题;然后,将能源消耗和时延引入子任务优先级定义中,基于动态优先级进行启发式卸载策略搜索。该算法保证了子任务之间的依赖性并同时考虑了无线资源分配。仿真结果表明,与已有研究相比,该算法能缩短高低轨卫星协同计算的任务执行延迟,且能够降低低轨卫星功耗。  相似文献   

10.
近年来,随着移动智能设备的普及以及5G等无线通信技术的发展,边缘计算作为一种新兴的计算模式被提出,作为传统的云计算模式的扩展与补充。边缘计算的基本思想是将移动设备上产生的计算任务从卸载到云端转变为卸载到网络边缘端,从而满足实时在线游戏、增强现实等计算密集型应用对低延迟的要求。边缘计算中的计算任务卸载是一个关键的研究问题,即计算任务应在本地执行还是卸载到边缘节点或云端。不同的任务卸载方案对任务完成时延和移动设备能耗都有着较大的影响。文中首先介绍了边缘计算的基本概念,归纳了边缘计算的几种系统架构。随后,详细阐述了边缘计算中的计算任务卸载问题。基于对任务卸载方案研究的必要性与挑战的分析,对现有的相关研究工作进行了全面的综述和总结,并对未来的研究方向进行了展望。  相似文献   

11.
超密集网络与边缘计算相结合时,高密度的基站分布可能会对同一用户重复覆盖,该用户选择不同基站进行卸载将会对系统性能产生不同影响,由此引出卸载对象选取问题。同时边缘计算可以将部分任务卸载到边缘服务器进行处理,选择合适的卸载比例能够显著降低所需的时延和能耗,由此引出卸载比例选取问题。提出一种超密集网络环境中基于博弈论和启发式算法的边缘计算卸载策略。针对卸载对象选取问题,根据边缘服务器到用户之间的距离和工作负载定义偏好度指标,各用户根据偏好度进行博弈后选择卸载对象,并对用户进行分组,将原问题分解为若干个并行的子问题。针对卸载比例选取问题,基于萤火虫群优化算法对各用户的卸载比例进行优化,得到适当的卸载比例。与全本地处理(ALP)策略、全卸载策略(AOS)和基于粒子群优化(PSO)算法的卸载策略进行对比,实验结果表明,ALP和AOS策略在总能耗和平均时延上具有一定的局限性,相比基于PSO的卸载策略,所提策略的时延降低22%,能耗降低20%,可以有效减少系统损失。  相似文献   

12.
移动边缘计算(mobile edge computing,MEC)是一种高效的技术,通过将计算密集型任务从移动设备卸载到边缘服务器,使终端用户实现高带宽、低时延的目标.移动边缘计算环境下的计算卸载在减轻用户负载和增强终端计算能力等方面发挥着重要作用.考虑了服务缓存,提出一种云-边-端协同的计算卸载框架,在该框架中引入D2D (device-to-device,D2D)通信和机会网络.基于建立的模型,将计算卸载决策问题转化为一个混合整数非线性规划问题,并对无线特性和移动用户之间的非合作博弈交互制定了一个迭代机制来共同确定计算卸载方案.对提出的计算卸载算法从理论上证明了多用户计算卸载博弈模型为严格势力场博弈(exact potential game,EPG),卸载决策可获得全网范围内的最优效益.考虑到服务器的计算资源、卸载任务数据量和任务延迟需求,提出对用户和MEC服务器之间最佳用户关联匹配算法.最后,模拟结果表明,卸载决策算法具有较快的收敛速度,并在能效方面优于其他基准算法.  相似文献   

13.
随着移动互联网业务的快速发展,增强现实、虚拟现实、超清视频等手机应用逐渐普及、IoT应用不断涌现,计算能力和续航能力的不足成为限制智能终端设备成功支撑这些应用的主要瓶颈。针对这一现状,采用计算卸载的方式解决该问题,在多用户多移动边缘服务器的场景下,综合考虑智能设备性能和服务器资源提出了一种基于改进拍卖算法的计算卸载策略。该策略主要包括两个阶段,在卸载决策阶段,通过综合考虑计算任务自身大小、计算需求和服务器计算能力、网络带宽等因素提出了卸载决策的依据;在任务调度阶段,通过综合考虑计算任务的时间需求和MEC服务器计算性能提出了基于改进拍卖算法的任务调度模型。实验证明,提出的计算卸载策略能够有效地降低服务时延,减少智能设备能耗,改善用户体验。  相似文献   

14.
传统网络架构部署下的边缘服务器难以满足大规模用户设备的接入和通信质量要求。为增加网络容量,提高频谱利用率,通过密集化基站的部署,构建一种面向超密集边缘计算网络的任务卸载优化模型。面对信道状态的变化、移动设备的动态需求以及服务器和频谱资源的有限性对任务卸载带来的挑战,结合任务类型和服务器的计算能力,并考虑信道状态变化、移动设备的动态需求以及干扰约束对卸载策略的影响,提出一种基于自适应模拟退火遗传(AGASA)算法的任务卸载方法,在满足任务截止期限的同时,对任务卸载能耗进行优化。同时,为得到最优上传功率,采用黄金分割算法解决功率控制问题,从而降低传输能耗。实验结果表明,AGASA算法在信道状态变化时可保证通信质量和计算效率,相比混合遗传粒子群算法,能够在满足截止期约束的同时使卸载能耗降低15.56%。  相似文献   

15.
随着智慧物联体系的发展,物联网中应用程序的种类与数量不断增加.在移动边缘计算(mobile edge computing, MEC)中,通过允许移动用户将任务卸载至附近MEC服务器以加快移动应用程序的速度.本文通过考虑不同任务属性、用户的移动性和时间延迟约束模拟移动边缘场景.根据用户移动轨迹,将目标建模为寻找满足时延约束条件且在卸载过程中产生最小能耗MEC服务器优化模型,并提出一种最小能耗卸载算法求解该问题的最优解.仿真结果表明,在约束条件下,提出的算法可以找到在用户移动轨迹中产生最小能耗的MEC服务器,并显著降低任务卸载过程的能耗与时延,提高应用程序服务质量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号