首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
密度峰值聚类算法(Density Peaks Clustering,DPC),是一种基于密度的聚类算法,该算法具有不需要指定聚类参数,能够发现非球状簇等优点。针对密度峰值算法凭借经验计算截断距离[dc]无法有效应对各个场景并且密度峰值算法人工选取聚类中心的方式难以准确获取实际聚类中心的缺陷,提出了一种基于基尼指数的自适应截断距离和自动获取聚类中心的方法,可以有效解决传统的DPC算法无法处理复杂数据集的缺点。该算法首先通过基尼指数自适应截断距离[dc],然后计算各点的簇中心权值,再用斜率的变化找出临界点,这一策略有效避免了通过决策图人工选取聚类中心所带来的误差。实验表明,新算法不仅能够自动确定聚类中心,而且比原算法准确率更高。  相似文献   

2.
基于快速搜索和寻找密度峰值聚类算法(DPC)具有无需迭代且需要较少参数的优点,但其仍然存在一些缺点:需要人为选取截断距离参数;在流形数据集上的处理效果不佳。针对这些问题,提出一种密度峰值聚类改进算法。该算法结合了自然和共享最近邻算法,重新定义了截断距离和局部密度的计算方法,并且算法融合了候选聚类中心计算概念,通过算法选出不同的候选聚类中心,然后以这些候选中心为新的数据集,再次开始密度峰值聚类,最后将剩余的点分配到所对应的候选中心点所在类簇中。改进的算法在合成数据集和UCI数据集上进行验证,并与K-means、DBSCAN和DPC算法进行比较。实验结果表明,提出的算法在性能方面有明显提升。  相似文献   

3.
密度峰值聚类(DPC)算法是一种新颖的基于密度的聚类算法,其原理简单、运行效率高.但DPC算法的局部密度只考虑了样本之间的距离,忽略了样本所处的环境,导致算法对密度分布不均数据的聚类效果不理想;同时,样本分配过程易产生分配错误连带效应.针对上述问题,提出一种基于相对密度估计和多簇合并的密度峰值聚类(DPC-RD-MCM)算法. DPC-RD-MCM算法结合K近邻和相对密度思想,定义了相对K近邻的局部密度,以降低类簇疏密程度对类簇中心的影响,避免稀疏区域没有类簇中心;重新定义微簇间相似性度量准则,通过多簇合并策略得到最终聚类结果,避免分配错误连带效应.在密度分布不均数据集、复杂形态数据集和UCI数据集上,将DPC-RD-MCM算法与DPC及其改进算法进行对比,实验结果表明:DPC-RD-MCM算法能够在密度分布不均数据上获得十分优异的聚类效果,在复杂形态数据集和UCI数据集的聚类性能上高于对比算法.  相似文献   

4.
CFSFDP(Clustering by Fast Search and Find of Density Peaks)是一种新的基于密度的聚类算法。该算法可以对非球形分布的数据聚类,有待调节参数少、聚类速度快等优点。但是对于类簇间密度相差较大的数据,该算法容易遗漏密度较小的类簇而影响聚类的准确率。针对这一问题,提出了基于密度比例峰值聚类算法即R-CFSFDP。该算法将密度比例引入到CFSFDP中,通过计算样本数据的密度比峰值来提高数据中密度较小类簇的辨识度,进而提升整体聚类的准确率。基于9个常用测试数据集(2个人工合成数据集,7个UCI数据集)的聚类实验结果表明,对于类簇间密度相差较大和类簇形状复杂的数据聚类问题,R-CFSFDP能够使得类簇中心更加清晰、易确定,聚类结果更好。  相似文献   

5.
针对密度峰值聚类算法(DPC)在计算样本的局部密度时随机选取截断距离、分配剩余样本点错误率高等问题,提出了一种物理学改进的密度峰值聚类算法W-DPC。通过万有引力定律定义样本的局部密度;基于第一宇宙速度建立了两步策略对剩余样本点进行分配,即必须属于点的分配和可能属于点的分配,使剩余样本点的分配更加精确。利用人工合成数据集与UCI上的真实数据集对W-DPC算法进行测试,并与KNN-DPC算法、DPC算法、DBSCAN算法、AP算法以及K-Means算法进行比较,数值实验表明:W-DPC算法的聚类效果明显优于其他算法。  相似文献   

6.
针对k-prototypes算法无法自动识别簇数以及无法发现任意形状的簇的问题,提出一种针对混合型数据的新方法:寻找密度峰值的聚类算法。首先,把CFSFDP(Clustering by Fast Search and Find of Density Peaks)聚类算法扩展到混合型数据集,定义混合型数据对象之间的距离后利用CFSFDP算法确定出簇中心,这样也就自动确定了簇的个数,然后其余的点按照密度从大到小的顺序进行分配。其次,研究了该算法中阈值(截断距离)及权值的选取问题:对于密度公式中的阈值,通过计算数据场中的势熵来自动提取;对于距离公式中的权值,利用度量数值型数据集和分类型数据集聚类趋势的统计量来定义。最后通过在三个实际混合型数据集上的测试发现:与传统k-prototypes算法相比,寻找密度峰值的聚类算法能有效提高聚类的精度。  相似文献   

7.
密度峰值聚类算法的局部密度定义未考虑密度分布不均数据类簇间的样本密度差异影响, 易导致误选类簇中心; 其分配策略依据欧氏距离通过密度峰值进行链式分配, 而流形数据通常有较多样本距离其密度峰值较远, 导致大量本应属于同一个类簇的样本被错误分配给其他类簇, 致使聚类精度不高. 鉴于此, 本文提出了一种K近邻和加权相似性的密度峰值聚类算法. 该算法基于样本的K近邻信息重新定义了样本局部密度, 此定义方式可以调节样本局部密度的大小, 能够准确找到密度峰值; 采用样本的共享最近邻及自然最近邻信息定义样本间的相似性, 摒弃了欧氏距离对分配策略的影响, 避免了样本分配策略产生的错误连带效应. 流形及密度分布不均数据集上的对比实验表明, 本文算法能准确找到疏密程度相差较大数据集的密度峰值, 避免了流形数据的分配错误连带效应, 得到了满意的聚类效果; 同时在真实数据集上的聚类效果也十分优秀.  相似文献   

8.
密度峰值聚类算法在处理密度不均匀的数据集时易将低密度簇划分到高密度簇中或将高密度簇分为多个子簇,且在样本点分配过程中存在误差传递问题。提出一种基于相对密度的密度峰值聚类算法。引入自然最近邻域内的样本点信息,给出新的局部密度计算方法并计算相对密度。在绘制决策图确定聚类中心后,基于对簇间密度差异的考虑,提出密度因子计算各个簇的聚类距离,根据聚类距离对剩余样本点进行划分,实现不同形状、不同密度数据集的聚类。在合成数据集和真实数据集上进行实验,结果表明,该算法的FMI、ARI和NMI指标较经典的密度峰值聚类算法和其他3种聚类算法分别平均提高约14、26和21个百分点,并且在簇间密度相差较大的数据集上能够准确识别聚类中心和分配剩余的样本点。  相似文献   

9.
密度分布不均数据是指类簇间样本分布疏密程度不同的数据.密度峰值聚类(DPC)算法在处理密度分布不均数据时,倾向于在密度较高区域内找到类簇中心,并易将稀疏类簇的样本分配给密集类簇.为避免上述缺陷,提出一种面向密度分布不均数据的近邻优化密度峰值聚类(DPC-NNO)算法.DPC-NNO算法结合逆近邻和k近邻定义新的局部密度,提高稀疏样本的局部密度,使算法能更准确地找到类簇中心;定义分配策略时引入共享近邻,计算样本间相似性,构造相似矩阵,使同一类簇样本联系更紧密,避免错误分配样本.将所提出的DPC-NNO算法与IDPC-FA、DPCSA、FNDPC、FKNN-DPC、DPC算法进行对比,实验结果表明,DPC-NNO算法在处理密度分布不均数据时能获得优异的聚类效果,对于复杂数据集和UCI数据集,DPC-NNO算法的综合性能优于对比算法.  相似文献   

10.
周欢欢  郑伯川  张征  张琦 《计算机应用》2022,42(5):1464-1471
针对基于共享最近邻的密度峰聚类算法中的近邻参数需要人为设定的问题,提出了一种基于自适应近邻参数的密度峰聚类算法。首先,利用所提出的近邻参数搜索算法自动获得近邻参数;然后,通过决策图选取聚类中心;最后,根据所提出的代表点分配策略,先分配代表点,后分配非代表点,从而实现所有样本点的聚类。将所提出的算法与基于共享最近邻的快速密度峰搜索聚类(SNN?DPC)、基于密度峰值的聚类(DPC)、近邻传播聚类(AP)、对点排序来确定聚类结构(OPTICS)、基于密度的噪声应用空间聚类(DBSCAN)和K-means这6种算法在合成数据集以及UCI数据集上进行聚类结果对比。实验结果表明,所提出的算法在调整互信息(AMI)、调整兰德系数(ARI)和FM指数(FMI)等评价指标上整体优于其他6种算法。所提算法能自动获得有效的近邻参数,且能较好地分配簇边缘区域的样本点。  相似文献   

11.
密度峰值聚类算法(DPC)能够有效地进行非球形数据的聚类,该算法需要输入截断距离,人工截取聚类中心,导致DPC算法的聚类效果有时较差。针对这些问题,提出一种结合密度比和系统演化的密度峰值聚类算法(DS-DPC)。利用自然最近邻搜索得出各样本点的邻居数目,根据密度比思想改进密度计算公式,使其能够反映周围样本的分布情况;对局部密度与相对距离的乘积进行降序排列,根据排序值选出聚类中心,将剩余样本按照DPC算法的分配策略进行聚类,避免了手动选择聚类中心的主观性;利用系统演化方法判断聚类结果是否需要合并或分离。通过在多个数据集上进行实验,并与其他聚类算法进行比较,实验结果表明,该算法具有较好的聚类效果。  相似文献   

12.
张清华  周靖鹏  代永杨  王国胤 《软件学报》2023,34(12):5629-5648
密度峰值聚类(density peaks clustering, DPC)是一种基于密度的聚类算法,该算法可以直观地确定类簇数量,识别任意形状的类簇,并且自动检测、排除异常点.然而, DPC仍存在些许不足:一方面, DPC算法仅考虑全局分布,在类簇密度差距较大的数据集聚类效果较差;另一方面, DPC中点的分配策略容易导致“多米诺效应”.为此,基于代表点(representative points)与K近邻(K-nearest neighbors, KNN)提出了RKNN-DPC算法.首先,构造了K近邻密度,再引入代表点刻画样本的全局分布,提出了新的局部密度;然后,利用样本的K近邻信息,提出一种加权的K近邻分配策略以缓解“多米诺效应”;最后,在人工数据集和真实数据集上与5种聚类算法进行了对比实验,实验结果表明,所提出的RKNN-DPC可以更准确地识别类簇中心并且获得更好的聚类结果.  相似文献   

13.
针对密度峰值聚类算法受人为干预影响较大和参数敏感的问题,即不正确的截断距离dc会导致错误的初始聚类中心,而且在某些情况下,即使设置了适当的dc值,仍然难以从决策图中人为选择初始聚类中心。为克服这些缺陷,提出一种新的基于密度峰值的聚类算法。该算法首先根据K近邻的思想来确定数据点的局部密度,然后提出一种新的自适应聚合策略,即首先通过算法给出阈值判断初始类簇中心,然后依据离初始类簇中心最近分配剩余点,最后通过类簇间密度可达来合并相似类簇。在实验中,该算法在合成和实际数据集中的表现比DPC、DBSCAN、KNNDPC和K-means算法要好,能有效提高聚类准确率和质量。  相似文献   

14.
针对密度峰值聚类算法在面对复杂结构数据集时容易出现分配错误的问题,提出一种优化分配策略的密度峰值聚类算法(ODPC)。新算法首先引入参数积γ,扩大了聚类中心的选取范围;然后使用改进的数据点分配策略,对数据集的数据点进行基于相似度指标MS的重新分配,进一步优化了簇类中点集的分配;最后使用dc近邻法优化识别数据集的噪声点。在人工数据集及UCI真实数据集上的实验均可证明,新算法能够在优化噪声识别的同时,提高复杂流形数据集中数据点分配的正确率,并取得比DPC算法、DenPEHC算法、GDPC算法更好的聚类效果。  相似文献   

15.
密度峰值聚类算法对密集程度不一数据的聚类效果不佳,样本分配过程易产生连带错误.为此,提出一种基于相互邻近度的密度峰值聚类算法.所提算法引入k近邻思想计算局部密度,以此保证密度的相对性.定义综合数据全局和局部特征的样本相互邻近度的度量准则,据此准则,提出一种新的样本分配策略.新的分配策略采用k近邻思想寻找密度峰值,将密度峰值的k个近邻点分配给其对应类簇,对所有已分配数据点寻找相互邻近度最高的未分配数据点,将未分配数据点分配给已分配数据点所在类簇.在合成和UCI数据集上,将所提算法与DPC、DBSCAN、OPTICS、AP、K-Means及DPC的改进算法进行比较,实验结果表明,所提出的算法性能最优.  相似文献   

16.
孙林  秦小营  徐久成  薛占熬 《软件学报》2022,33(4):1390-1411
密度峰值聚类(density peak clustering, DPC)是一种简单有效的聚类分析方法.但在实际应用中,对于簇间密度差别大或者簇中存在多密度峰的数据集,DPC很难选择正确的簇中心;同时,DPC中点的分配方法存在多米诺骨牌效应.针对这些问题,提出一种基于K近邻(K-nearest neighbors,KNN)和优化分配策略的密度峰值聚类算法.首先,基于KNN、点的局部密度和边界点确定候选簇中心;定义路径距离以反映候选簇中心之间的相似度,基于路径距离提出密度因子和距离因子来量化候选簇中心作为簇中心的可能性,确定簇中心.然后,为了提升点的分配的准确性,依据共享近邻、高密度最近邻、密度差值和KNN之间距离构建相似度,并给出邻域、相似集和相似域等概念,以协助点的分配;根据相似域和边界点确定初始聚类结果,并基于簇中心获得中间聚类结果.最后,依据中间聚类结果和相似集,从簇中心到簇边界将簇划分为多层,分别设计点的分配策略;对于具体层次中的点,基于相似域和积极域提出积极值以确定点的分配顺序,将点分配给其积极域中占主导地位的簇,获得最终聚类结果.在11个合成数据集和27个真实数据集上进行仿真...  相似文献   

17.
基于密度峰值和网格的自动选定聚类中心算法   总被引:1,自引:0,他引:1  
夏庆亚 《计算机科学》2017,44(Z11):403-406
针对快速搜索和发现密度峰值的聚类算法(DPC)中数据点之间计算复杂,最终聚类的中心个数需要通过决策图手动选取等问题,提出基于密度峰值和网格的自动选定聚类中心的改进算法GADPC。首先结合Clique网格聚类算法的思想,不再针对点对象进行操作,而是将点映射到网格,并将网格作为聚类对象,从而减少了DPC算法中对数据点之间的距离计算和聚类次数;其次通过改进后的聚类中心个数判定准则更精确地自动选定聚类中心个数;最后对网格边缘点和噪声点,采用网格内点对象和相邻网格间的相似度进行了处理。实验通过采用UEF(University of Eastern Finland)提供的数据挖掘使用的人工合成数据集和UCI自然数据集进行对比,其聚类评价指标(Rand Index)表明,改进的算法在计算大数据集时聚类质量不低于DPC和K-means算法,而且提高了DPC算法的处理效率。  相似文献   

18.
Wang  Yizhang  Wang  Di  Zhang  Xiaofeng  Pang  Wei  Miao  Chunyan  Tan  Ah-Hwee  Zhou  You 《Neural computing & applications》2020,32(17):13465-13478

Density peak clustering (DPC) is a recently developed density-based clustering algorithm that achieves competitive performance in a non-iterative manner. DPC is capable of effectively handling clusters with single density peak (single center), i.e., based on DPC’s hypothesis, one and only one data point is chosen as the center of any cluster. However, DPC may fail to identify clusters with multiple density peaks (multi-centers) and may not be able to identify natural clusters whose centers have relatively lower local density. To address these limitations, we propose a novel clustering algorithm based on a hierarchical approach, named multi-center density peak clustering (McDPC). Firstly, based on a widely adopted hypothesis that the potential cluster centers are relatively far away from each other. McDPC obtains centers of the initial micro-clusters (named representative data points) whose minimum distance to the other higher-density data points are relatively larger. Secondly, the representative data points are autonomously categorized into different density levels. Finally, McDPC deals with micro-clusters at each level and if necessary, merges the micro-clusters at a specific level into one cluster to identify multi-center clusters. To evaluate the effectiveness of our proposed McDPC algorithm, we conduct experiments on both synthetic and real-world datasets and benchmark the performance of McDPC against other state-of-the-art clustering algorithms. We also apply McDPC to perform image segmentation and facial recognition to further demonstrate its capability in dealing with real-world applications. The experimental results show that our method achieves promising performance.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号