首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper starts with a brief review of robust model predictive control (RMPC) schemes for uncertain systems using linear matrix inequalities (LMIs) subject to input saturated and softened state constraints. However when RMPC has both input and state constraints, difficulties will arise due to the inability to satisfy the state constraints. In this paper, we develop two new tracking setpoint RMPC schemes with common Lyapunov function and with zero terminal equality subject to input saturated and softened state constraints. A brief comparative simulation of the two new RMPC schemes is implemented via examples to demonstrate the ability of the new RMPC schemes.  相似文献   

2.
In this work, we propose a dynamic output feedback robust model predictive control (RMPC) design method for linear uncertain systems with input constraints. In order to handle the input constraints, the control signals are permitted to saturate, which can fully utilize the capability of actuators and thus can reduce the conservatism. For the unavailable states, an ellipsoidal set is used to obtain an estimation, and it is updated at every time instant. A modified RMPC design requirement is used to ensure the recursive feasibility of the optimization problem. Then, the design method is formulated in terms of a convex optimization problem with linear matrix inequality constraints. The proposed output feedback RMPC design method is expected to further reduce the conservativeness. The improvements of the proposed algorithm over the other existing techniques is demonstrated by an example. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
针对一类输入和状态受限的离散线性不确定系统,提出了一种基于Tube不变集的离线鲁棒模型预测控制方法.首先针对输入和状态约束线性时不变标准系统,设计了改进的基于多面体不变集的离线模型预测控制算法,并证明了稳定性.其次对于存在未知有界干扰的实际不确定系统,引入了Tube不变集策略,通过设计对应标准模型的最优控制序列和状态轨迹,给出了实际不确定系统的离线Tube不变集控制策略,保证系统状态鲁棒渐近稳定,并收敛于终端干扰不变集.仿真结果验证了该控制方法的有效性.  相似文献   

4.
Robust model predictive control with guaranteed setpoint tracking   总被引:1,自引:0,他引:1  
In this paper a novel robust model predictive control (RMPC) algorithm is proposed, which is guaranteed to stabilize any linear time-varying system in a given convex uncertainty region while respecting state and input constraints. Moreover, unlike most existing RMPC algorithms, the proposed algorithm is guaranteed to remove steady-state offset in the controlled variables for setpoints (possibly) different from the origin when the system is unknown linear time-invariant. The controller uses a dual-mode paradigm (linear control law plus free control moves to reach an appropriate invariant region), and the key step is the design of a robust linear state feedback controller with integral action and the construction of an appropriate polyhedral invariant region in which this controller is guaranteed to satisfy the process constraints. The proposed algorithm is efficient since the on-line implementation only requires one to solve a convex quadratic program with a number of decision variables that scale linearly with the control horizon. The main features of the new control algorithm are illustrated through an example of the temperature control of an open-loop unstable continuous stirred tank reactor.  相似文献   

5.
A non-fragile robust model predictive control (RMPC) is designed in the uncertain systems under bounded control signals. To this aim, a class of the nonlinear systems with additive uncertainty is considered in its general form. The RMPC synthesis could lead to the proper selection of the controller’s gains. Thus, the non-fragile RMPC design is translated into a minimization problem subjected to some constraints in terms of linear matrix inequality (LMI). Hence, the controller’s gains are computed by solving such a minimization problem. In some numerical examples, the suggested non-fragile RMPC is compared with the other methods. The simulation results demonstrate the effectiveness of the proposed RMPC in comparison with similar techniques.  相似文献   

6.
This study investigates the problem of robust model predictive control (RMPC) for active suspension systems with time-varying delays and input constraints. The uncertainty is of convex polytopic type. Based on the Lyapunov-Krasovskii functional method, sufficient stability conditions of the time-varying delays systems are derived by linear matrix inequalities (LMIs) terms. At each time set, a feasible state feedback is obtained by minimizing an upper bound of the ‘worst-case’ quadratic objective function over an infinite horizon subject to constraints on inputs. Finally, a quarter-vehicle model is exploited to demonstrate the effectiveness of the proposed method.  相似文献   

7.
一类具有非线性扰动的多重时滞不确定系统鲁棒预测控制   总被引:1,自引:0,他引:1  
针对一类具有非线性扰动且同时存在多重状态和输入时滞的不确定系统, 提出 一种鲁棒预测控制器设计方法. 基于预测控制滚动优化原理, 运用Lyapunov稳定性 理论和线性矩阵不等式 (Linear matrix inequalities, LMIs)方法, 首先近似求解无限时域二次性能指标优化问题, 然后优化非 线性扰动项所应满足的最大上界, 定量地研究鲁棒预测控制在范数有界意义下的扰动抑制 问题, 并给出了鲁棒预测控制器存在的充分条件. 最后通过仿真验证了所提方法的有效性.  相似文献   

8.
This paper investigates the robust model predictive control (RMPC) problem for a class of linear discrete‐time systems subject to saturated inputs and randomly occurring uncertainties (ROUs). Due to limited bandwidth of the network channels, the networked transmission would inevitably lead to incomplete measurements and subsequently unavoidable network‐induced phenomenon that include saturated inputs as a special case. The saturated inputs are assumed to be sector‐bounded in the underlying system. In addition, the ROUs are taken into account to reflect the difficulties in precise system modelling, where the norm‐bounded uncertainties are governed by certain uncorrelated Bernoulli‐distributed white noise sequences with known conditional probabilities. Based on the invariant set theory, a sufficient condition is derived to guarantee the robust stability in the mean‐square sense of the closed‐loop system. By employing the convex optimization technique, the controller gain is obtained by solving an optimization problem with some inequality constraints. Finally, a simulation example is employed to demonstrate the effectiveness of the proposed RMPC scheme.  相似文献   

9.
Systems with large operating regions and non-zero state target tracking have limited the industrial application of robust model predictive control (RMPC) with synthetic action. To overcome the problem, this paper presents a novel formulation of synthesizing scheduled RMPC for linear time varying (LTV) systems. Off-line, we compute the matrix that transforms target output into steady state first. Then a set of stabilizing state feedback laws which are corresponding to a set of estimated regions of stability covering the desired operating region are provided. On-line, these control laws are implemented as a single scheduled state feedback model predictive control (MPC) which switches between the set of local controllers and achieve the desired target at last. Finally, the algorithm is illustrated with an example.  相似文献   

10.
This paper proposes a new approach for the design of output feedback robust model predictive control (OFRMPC) with a dynamic output feedback controller (DOFC) for linear uncertain systems subject to input and output constraints. The main contribution of this work is the full on‐line synthesis of the DOFC as part of a convex optimization problem, with constraint satisfaction and asymptotic stability guarantees. A numerical example is employed to illustrate the advantage of the proposed control law, as compared with another OFRMPC strategy with partial DOFC synthesis. The present paper also points out an inconsistency in the mathematical development of a previous related OFRMPC formulation (‘improved dynamic output feedback RMPC for linear uncertain systems with input constraints’). Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
This paper proposes a robust output feedback model predictive control (MPC) scheme for linear parameter varying (LPV) systems based on a quasi-min–max algorithm. This approach involves an off-line design of a robust state observer for LPV systems using linear matrix inequality (LMI) and an on-line robust output feedback MPC algorithm using the estimated state. The proposed MPC method for LPV systems is applicable for a variety of systems with constraints and guarantees the robust stability of the output feedback systems. A numerical example for an LPV system subject to input constraints is given to demonstrate its effectiveness.  相似文献   

12.
针对输入和状态受约束的多胞不确定线性系统,提出了基于容许集的扩大吸引域三模鲁棒模型预测控制方法.在多面体不变集离线模型预测控制算法的基础上引入容许集,以多面体不变集序列的并集作为模态1,基于N步容许集的控制容许集作为模态2,并利用离线设计和在线优化的控制策略,设计了三模变终端约束鲁棒模型预测控制算法,以实现系统渐近稳定.该算法不仅降低了在线运算量,而且扩大了吸引域.最后的仿真结果验证了所提出算法的有效性.  相似文献   

13.
This paper studies the future model prediction and robust model predictive control (RMPC) design for linear parameter varying systems with bounded parameter changes. By developing tight bound estimations for varying parameters, we construct a set-valued map as the predicted family of future models. This construction attains accurate estimations and thus reduces conservativeness. Based on model predictions, we use a parameter-dependent feedback to design RMPC that achieves an enhanced performance with guaranteed robust and stability properties.  相似文献   

14.
The success of the single-model MPC (SMPC) controller depends on the accuracy of the process model. Modeling errors cause sub-optimal control performance and may cause the control system to become closed-loop unstable. The goal of this paper is to examine the control performance of the robust MPC (RMPC) method proposed by Wang and Rawlings [34] on several illustrative examples. In this paper, we show the RMPC method successfully controls systems with time-varying uncertainties in the process gain, time constant and time delay and achieves offset-free non-zero set point tracking and non-zero disturbance rejection subject to input and output constraints.  相似文献   

15.
This paper is concerned with the robust model predictive control (RMPC) problem for polytopic uncertain systems with state saturation nonlinearities under the Round‐Robin (RR) protocol. With respect to the practical application, one of the most commonly encountered obstacles that stem from the physical limitation of system components, ie, state saturation, is adequately taken into consideration. In order to reduce the network transmission burden and improve the utilization of the network from the controller nodes to the actuator node, a so‐called RR protocol is employed to orchestrate the data transmission order. At each transmission instant, only one controller node that obtains the priority is accessible to the shared communication network. Our aim of the underlying problem is to design a set of controllers in the framework of RMPC such that the closed‐loop system is asymptotically stable. By taking the influence of the RR protocol and the state saturation precisely into account, some sufficient criteria are established in terms of the token‐dependent Lyapunov‐like approach. Then, an online optimization problem subjected to some matrix inequality constraints is provided, and the desired controllers can be obtained by solving the certain upper bound of the objective addressed. Finally, a distillation process example is provided to illustrate the effectiveness of the proposed RMPC approach.  相似文献   

16.
This paper is concerned with the problem of designing robust state derivative feedback control laws in discrete time. The main contribution consists of a method for recasting a continuous time state space model in the form of a discrete time model formulated in terms of the state derivative. Uncertain input delays and parametric uncertainties in polytopic form can be propagated from the original state space representation to the resulting state derivative model. Therefore, robust control techniques originally developed for discrete time state space models can be directly employed to design the state derivative feedback law. Three computational examples are presented for illustration. The first example highlights the importance of accounting for the effect of sampling in the design procedure. More specifically, a linear quadratic regulation problem involving the state derivative is addressed. The second example involves the design of a robust predictive controller in the presence of input constraints and uncertain time delay. Finally, the third example is concerned with robust pole placement in the presence of parametric uncertainty.  相似文献   

17.
本文针对带有参数不确定和输入饱和的单输入单输出(SISO)仿射非线性系统,利用反馈线性化,将非线性系统转化为带有扰动和状态依赖输入饱和的多胞线性参变(LPV)模型,进而提出一种基于平方和(SOS)的鲁棒模型预测控制器(RMPC)设计方法.基于多胞RMPC控制器,设计加权状态反馈控制律,通过引入范数有界定理,确保扰动下预测状态收敛到不变集内,并利用勒让德多项式近似和SOS技术,将状态依赖输入饱和约束转化为多项式凸优化问题,以获得实际和辅助状态反馈律,所设计的SOS-RMPC控制器能够保证闭环系统的稳定性.通过与常规多胞RMPC控制器的仿真比较,验证了本方法的有效性,并进一步仿真分析了勒让德多项式阶次对控制器性能的影响.  相似文献   

18.
This paper considers stabilization of discrete-time linear systems, where network exists for transmitting the sensor and controller information, and arbitrary bounded packet loss occurs in the sensor–controller link and the controller–actuator link. The stabilization of this system is transformed into the robust stabilization of a set of systems. The stability result for this system is specially applied on model predictive control (MPC) that explicitly considers the satisfaction of input and state constraints. Two synthesis approaches of MPC are presented, one parameterizing the infinite horizon control moves into a single state feedback law, the other into a free control move followed by the single state feedback law. Two simulation examples are given to illustrate the effectiveness of the proposed techniques.  相似文献   

19.
In this paper, we investigate the mixed H2/H robust model predictive control (RMPC) for polytopic uncertain systems, which refers to the infinite horizon optimal guaranteed cost control (OGCC). To fully use the capability of actuators, we adopt a saturating feedback control law as the control strategy of RMPC. As the saturating feedback control law can be effectively represented by the convex hull of a group of auxiliary linear feedback laws, the auxiliary feedback laws allow us to design the actual feedback control law without consideration of the input constraints directly to achieve the improved performance. Moreover, we suggest the relative weights on the actual and auxiliary feedback laws to the RMPC, which in turn improves the closed-loop system performance. Furthermore, an off-line design of the proposed RMPC is also developed to make it more practical. Numerical studies demonstrate the effectiveness of the proposed algorithm.  相似文献   

20.
We propose a novel procedure for the solution to the problem of robust model predictive control (RMPC) of linear discrete time systems involving bounded disturbances and model-uncertainties along with hard constraints on the input and state. The RMPC (outer) controller – responsible for steering the uncertain system state to a designed invariant (terminal) set – has a mixed structure consisting of a state-feedback component as well as a control-perturbation. Both components are explicitly considered as decision variables in the online optimization and the nonlinearities commonly associated with such a state-feedback parameterization are avoided by adopting a sequential approach in the formulation. The RMPC controller minimizes an upper bound on an H2/H-based cost function. Moreover, the proposed algorithm does not require any offline calculation of (feasible) feedback gains for the computation of the RMPC controller. The optimal Robust Positively invariant set and the inner controller – responsible for keeping the state within the invariant set – are both computed in one step as solutions to an LMI optimization problem. We also provide conditions which guarantee the Lyapunov stability of the closed-loop system. Numerical examples, taken from the literature, demonstrate the advantages of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号