首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Multiple-valued quantum circuits are a promising choice for future quantum computing technology since they have several advantages over binary quantum circuits. Binary parallel adder/subtractor is central to the ALU of a classical computer and its quantum counterpart is used in oracles – the most important part that is designed for quantum algorithms. Many NP-hard problems can be solved more efficiently in quantum using Grover algorithm and its modifications when an appropriate oracle is constructed. There is therefore a need to design standard logic blocks to be used in oracles – this is similar to designing standard building blocks for classical computers. In this paper, we propose quantum realization of a ternary full-adder using macro-level ternary Feynman and Toffoli gates built on the top of ion-trap realizable ternary 1-qutrit and Muthukrishnan–Stroud gates. Our realization has several advantages over the previously reported realization. Based on this realization of ternary full-adder we propose realization of a ternary parallel adder with partially-look-ahead carry. We also show the method of using the same circuit as a ternary parallel adder/subtractor.  相似文献   

2.
Multiple-valued quantum circuits are promising choices for future quantum computing technology, since they have several advantages over binary quantum circuits. Quaternary logic has the advantage that classical binary functions can be very easily represented as quaternary functions by grouping two bits together into quaternary values. Grover’s quantum search algorithm requires a sub-circuit called oracle, which takes a set of inputs and gives an output stating whether a given search condition is satisfied or not. Equality, less-than, and greater-than comparisons are widely used as search conditions. In this paper, we show synthesis of quaternary equality, less-than, and greater-than comparators on the top of ion-trap realizable 1-qudit gates and 2-qudit Muthukrishnan–Stroud gates.  相似文献   

3.
Multi-level (ML) quantum logic can potentially reduce the number of inputs/outputs or quantum cells in a quantum circuit which is a limitation in current quantum technology. In this paper we propose theorems about ML-quantum and reversible logic circuits. New efficient implementations for some basic controlled ML-quantum logic gates, such as three-qudit controlled NOT, Cycle, and Self Shift gates are proposed. We also propose lemmas about r-level quantum arrays and the number of required gates for an arbitrary n-qudit ML gate. An equivalent definition of quantum cost (QC) of binary quantum gates for ML-quantum gates is introduced and QC of controlled quantum gates is calculated.  相似文献   

4.
Quantum ternary logic is a promising emerging technology for the future quantum computing. Ternary reversible logic circuit design has potential advantages over the binary ones like its logarithmic reduction in the number of qudits. In reversible logic all computations are done in an invertible fashion. In this paper, we propose a new quantum reversible ternary half adder with quantum cost of only 7 and a new quantum ternary full adder with a quantum cost of only 14. We termed it QTFA. Then we propose 3-qutrit parallel adders. Two different structures are suggested: with and without input carry. Next, we propose quantum ternary coded decimal (TCD) detector circuits. Two different approaches are investigated: based on invalid numbers and based on valid numbers. Finally, we propose the quantum realization of TCD adder circuits. Also here, two approaches are discussed. Overall, the proposed reversible ternary full adder is the best between its counterparts comparing the figures of merits. The proposed 3-qutrit parallel adders are compared with the existing designs and the improvements are reported. On the other hand, this paper suggested the quantum reversible TCD adder designs for the first time. All the proposed designs are realized using macro-level ternary Toffoli gates which are built on the top of the ion-trap realizable ternary 1-qutrit gates and 2-qutrit Muthukrishnan–Stroud gates.  相似文献   

5.
The reducing of the width of quantum reversible circuits makes multiple-valued reversible logic a very promising research area. Ternary logic is one of the most popular types of multiple-valued reversible logic, along with the Subtractor, which is among the major components of the ALU of a classical computer and complex hardware. In this paper the authors will be presenting an improved design of a ternary reversible half subtractor circuit. The authors shall compare the improved design with the existing designs and shall highlight the improvements made after which the authors will propose a new ternary reversible full subtractor circuit. Ternary Shift gates and ternary Muthukrishnan–Stroud gates were used to build such newly designed complex circuits and it is believed that the proposed designs can be used in ternary quantum computers. The minimization of the number of constant inputs and garbage outputs, hardware complexity, quantum cost and delay time is an important issue in reversible logic design. In this study a significant improvement as compared to the existing designs has been achieved in as such that with the reduction in the number of ternary shift and Muthukrishnan-Stroud gates used the authors have produced ternary subtractor circuits.  相似文献   

6.
On figures of merit in reversible and quantum logic designs   总被引:1,自引:0,他引:1  
Five figures of merit including number of gates, quantum cost, number of constant inputs, number of garbage outputs, and delay are used casually in the literature to compare the performance of different reversible or quantum logic circuits. In this paper we propose new definitions and enhancements, and identify similarities between these figures of merit. We evaluate these measures to show their strength and weakness. Instead of the number of gates, we introduce the weighted number of gates, where a weighting factor is assigned to each quantum or reversible gate, based on its type, size and technology. We compare the quantum cost with weighted number of gates of a circuit and show three major differences between these measures. It is proved that it is not possible to define a universal reversible logic gate without adding constant inputs. We prove that there is an optimum value for number of constant inputs to obtain a circuit with minimum quantum cost. Some reversible logic benchmarks have been synthesized using Toffoli and Fredkin gates to obtain their optimum values of number of constant inputs. We show that the garbage outputs can also be used to decrease the quantum cost of the circuit. A new definition of delay in quantum and reversible logic circuits is proposed for music line style representation. We also propose a procedure to calculate the delay of a circuit, based on the quantum cost and the depth of the circuit. The results of this research show that to achieve a fair comparison among designs, figures of merit should be considered more thoroughly.   相似文献   

7.
Demand of Very Large Scale Integration (VLSI) circuits with very high speed and low power are increased due to communication system's transmission speed increase. During computation, heat is dissipated by a traditional binary logic or logic gates. There will be one or more input and only one output in irreversible gates. Input cannot be reconstructed using those outputs. In low power VLSI, reversible logic is commonly preferred in recent days. Information is not lost in reversible gates and back computation is possible in reversible circuits with reduced power dissipation. Reversible full adder circuits are implemented in the previous work to optimize the design and speed of the circuits. Reversible logic gates like TSG, Peres, Feynman, Toffoli, Fredkin are mostly used for designing reversible circuits. However it does not produced a satisfactory result in terms of static power dissipation. In this proposed research work, reversible logic is implemented in the full adder of MOS Current-Mode Logic (MCML) to achieve high speed circuit design with reduced power consumption. In VLSI circuits, reliable performance and high speed operation is exhibited by a MCML when compared with CMOS logic family. Area and better power consumption can be produced implementing reversible logic in full adder of MCML. Minimum garbage output and constant inputs are used in reversible full adder. The experimental results shows that the proposed designed circuit achieves better performance compared with the existing reversible logic circuits such as Feynman gate based FA, Peres gate based FA, TSG based FA in terms of average power, static power dissipation, static current and area.  相似文献   

8.
Reversible logic is a new field of study that has applications in optical information processing, low power CMOS design, DNA computing, bioinformatics, and nanotechnology. Low power consumption is a basic issue in VLSI circuits today. To prevent the distribution of errors in the quantum circuit, the reversible logic gates must be converted into fault-tolerant quantum operations. Parity preserving is used to realize fault tolerant in this circuits. This paper proposes a new parity preserving reversible gate. We named it NPPG gate. The most significant aspect of the NPPG gate is that it can be used to produce parity preserving reversible full adder circuit. The proposed parity preserving reversible full adder using NPPG gate is more efficient than the existing designs in term of quantum cost and it is optimized in terms of number of constant inputs and garbage outputs. Compressors are of importance in VLSI and digital signal processing applications. Effective VLSI compressors reduce the impact of carry propagation of arithmetic operations. They are built from the full adder blocks. We also proposed three new approaches of parity preservation reversible 4:2 compressor circuits. The third design is better than the previous two in terms of evaluation parameters. The important contributions have been made in the literature toward the design of reversible 4:2 compressor circuits; however, there are not efforts toward the design of parity preservation reversible 4:2 compressor circuits. All the scales are in the nanometric criteria.  相似文献   

9.
Reversible logic plays an important role in quantum computing. Several papers have been recently published on universality of sets of reversible gates. However, a fundamental unsolved problem remains: “what is the minimum set of gates that are universal for n-qubit circuits without ancillae bits”. We present a library of 2 gates which is sufficient to realize all reversible circuits of n variables. It is a minimal library of gates for binary reversible logic circuits. We also analyze the complexity of the syntheses.  相似文献   

10.
One of the elementary operations in computing systems is multiplication. Therefore, high-speed and low-power multipliers design is mandatory for efficient computing systems. In designing low-energy dissipation circuits, reversible logic is more efficient than irreversible logic circuits but at the cost of higher complexity. This paper introduces an efficient signed/unsigned 4 × 4 reversible Vedic multiplier with minimum quantum cost. The Vedic multiplier is considered fast as it generates all partial product and their sum in one step. This paper proposes two reversible Vedic multipliers with optimized quantum cost and garbage output. First, the unsigned Vedic multiplier is designed based on the Urdhava Tiryakbhyam (UT) Sutra. This multiplier consists of bitwise multiplication and adder compressors. Compared with Vedic multipliers in the literature, the proposed design has a quantum cost of 111 with a reduction of 94% compared to the previous design. It has a garbage output of 30 with optimization of the best-compared design. Second, the proposed unsigned multiplier is expanded to allow the multiplication of signed numbers as well as unsigned numbers. Two signed Vedic multipliers are presented with the aim of obtaining more optimization in performance parameters. DesignI has separate binary two’s complement (B2C) and MUX circuits, while DesignII combines binary two’s complement and MUX circuits in one circuit. DesignI shows the lowest quantum cost, 231, regarding state-of-the-art. DesignII has a quantum cost of 199, reducing to 86.14% of DesignI. The functionality of the proposed multiplier is simulated and verified using XILINX ISE 14.2.  相似文献   

11.
In the field of nanotechnology, quantum dot-cellular automata (QCA) is the promising archetype that can provide an alternative solution to conventional complementary metal oxide semiconductor (CMOS) circuit. QCA has high device density, high operating speed, and extremely low power consumption. Reversible logic has widespread applications in QCA. Researchers have explored several designs of QCA-based reversible logic circuits, but still not much work has been reported on QCA-based reversible binary subtractors. The low power dissipation and high circuit density of QCA pledge the energy-efficient design of logic circuit at a nano-scale level. However, the necessity of too many logic gates and detrimental garbage outputs may limit the functionality of a QCA-based logic circuit. In this paper we describe the design and implementation of a DG gate in QCA. The universal nature of the DG gate has been established. The QCA building block of the DG gate is used to achieve new reversible binary subtractors. The proposed reversible subtractors have low quantum cost and garbage outputs compared to the existing reversible subtractors. The proposed circuits are designed and simulated using QCA Designer-2.0.3.  相似文献   

12.
Application of quantum-dot is a promising technology for implementing digital systems at nano-scale. QCA supports the new devices with nanotechnology architecture. This technique works based on electron interactions inside quantum-dots leading to emergence of quantum features and decreasing the problem of future integrated circuits in terms of size. In this paper, we will successfully design, implement and simulate a new full adder based on QCA with the minimum delay, area and complexities. Also, new XOR gates will be presented which are used in 8-bit controllable inverter in QCA. Furthermore, a new 8-bit full adder is designed based on the majority gate in the QCA, with the minimum number of cells and area which combines both designs to implement an 8-bit adder/subtractor in the QCA. This 8-bit adder/subtractor circuit has the minimum delay and complexity. Being potentially pipeline, the QCA technology calculates the maximum operating speed.  相似文献   

13.
基于位运算的量子可逆逻辑电路快速综合算法   总被引:1,自引:0,他引:1  
量子可逆逻辑电路是构建量子计算机的基本单元.本文结合可逆逻辑电路综合的多种算法,根据可逆逻辑电路综合的本质是置换问题,巧妙应用位运算构造高效完备的Hash函数,提出了基于Hash表的新颖高效的量子可逆逻辑电路综合算法,可使用多种量子门,以极高的效率生成最优的量子可逆逻辑电路,从理论上实现制造量子电路的成本最低.按照国际同行认可的3变量可逆函数测试标准,该算法不仅能够生成全部最优电路,而且运行速度远远超过其它算法.实验结果表明,该算法按最小长度标准综合电路的平均速度是目前最好结果的69.8倍.  相似文献   

14.
基于Hash表的量子可逆逻辑电路综合的快速算法   总被引:4,自引:1,他引:3  
量子可逆逻辑电路是构建量子计算机的基本单元,通过量子门的级联与组合构成量子计算机,量子可逆逻辑电路的综合就是根据电路功能,以较小的量子代价自动构造量子可逆逻辑电路.结合可逆逻辑电路综合的多种算法,提出了一种新颖高效的量子电路综合算法,巧妙构造最小完备的Hash函数,可使用多种量子门,采用任意量子代价标准,以极高的效率生成最优的量子可逆逻辑电路.为实现量子电路综合的自动化,首次提出了利用量子线的置换自动构造各种量子门库的通用算法.采用国际同行认可的3变量可逆函数测试标准,该算法不仅能够生成全部最优电路.而且运行速度远远超过其他算法·实验结果表明,该算法按最小长度、最小代价标准综合电路的平均速度分别是目前最好结果的49.15倍、365.13倍.  相似文献   

15.
量子可逆逻辑综合的关键技术及其算法   总被引:1,自引:0,他引:1  
李志强  李文骞  陈汉武 《软件学报》2009,20(9):2332-2343
最优化量子可逆逻辑的关键在于用最小的量子代价自动构造量子可逆逻辑.为了提高可逆逻辑自动生成与优化的效率,提出了类模板技术和一种快速算法.模板技术是一个有效的优化工具,类模板技术可以显著提高模板技术的匹配效率;R-M算法是可逆逻辑综合的一种较好的迭代方法,基于R-M算法的原始思想,构造了一个Hash函数,并在此基础上提出了一种可逆逻辑综合的快速算法.实验结果表明,在同等实验环境下使用类模板技术与快速算法,其优化的效果与效率远远优于已知的其他算法.  相似文献   

16.
A serious obstacle to large-scale quantum algorithms is the large number of elementary gates, such as the controlled-NOT gate or Toffoli gate. Herein, we present an improved linear-depth ripple-carry quantum addition circuit, which is an elementary circuit used for quantum computations. Compared with previous addition circuits costing at least two Toffoli gates for each bit of output, the proposed adder uses only a single Toffoli gate. Moreover, our circuit may be used to construct reversible circuits for modular multiplication, Cx mod M with x < M, arising as components of Shor’s algorithm. Our modular-multiplication circuits are simpler than previous constructions, and may be used as primitive circuits for quantum computations.  相似文献   

17.
This paper demonstrates the design of n-bit novel low power reversible binary incrementer in Quantum-Dot Cellular Automata (QCA). The comparison of quantum cost in quantum gate based approach and in QCA based design agreed the cost efficient implementation in QCA. The power dissipation by proposed circuit is estimated, which shows that the circuit dissipates very low heat energy suitable for reversible computing. All the circuits are evaluated in terms of logic gates, circuit density and latency that confirm the faster operating speed at nano scale. The reliability of the circuit under thermal randomness is explored which describes the efficiency of the circuit.  相似文献   

18.

Integrated circuits always face with two major challenges including heat caused by energy losses and the area occupied. In recent years, different strategies have been presented to reduce these two major challenges. The implementations of circuits in a reversible manner as well as the use of multiple-valued logic are among the most successful strategies. Reversible circuits reduce energy loss and ultimately eliminate the problem of overheating in circuits. Preferring multiple-valued logic over binary logic can also greatly reduce area occupied of circuits. When switching from binary logic to multiple-valued logic, the dominant thought in binary logic is the basis of designing computational circuits in multiple-valued logic, and disregards the capabilities of multiple-valued logic. This can cause a minimal use of multiple-valued logic capabilities, increase complexity and delay in the multiple-valued computational circuits. In this paper, we first introduce an efficient reversible ternary half-adder. Afterward, using the reversible ternary half-adder, we introduce two reversible versions of traditional and comprehensive reversible ternary full-adders. Finally, using the introduced reversible ternary full-adders, we propose two novel designs of reversible ternary 6:2 Compressor. The results of the comparisons show that although the proposed circuits are similar to or better than previous corresponding designs in terms of criteria number of constant input and number of garbage outputs, they are superior in criterion quantum cost.

  相似文献   

19.
With the development of reversible and quantum computing, study of reversible and quantum circuits has also developed rapidly. Due to physical constraints, most quantum circuits require quantum gates to interact on adjacent quantum bits. However, many existing quantum circuits nearest-neighbor have large quantum cost. Therefore, how to effectively reduce quantum cost is becoming a popular research topic. In this paper, we proposed multiple optimization strategies to reduce the quantum cost of the circuit, that is, we reduce quantum cost from MCT gates decomposition, nearest neighbor and circuit simplification, respectively. The experimental results show that the proposed strategies can effectively reduce the quantum cost, and the maximum optimization rate is 30.61% compared to the corresponding results.  相似文献   

20.
Quaternary encoded binary circuits are more compact than their binary counterpart. Although quaternary reversible circuits are realizable, design of such circuits is still in its infancy. This work proposes a new, enhanced method of quaternary Galois field sum of products (QGFSOP) synthesis for quaternary quantum circuits. To reduce QGFSOP product terms, the algorithm makes use of 11 newly defined quaternary Galois field (QGF) expansions (for a total of 21 QGF expansions). This algorithm achieves QGFSOP minimization with the assistance of a pseudo-Kronecker Galois field decision diagram (QGFDD). This is a novel approach for QGFSOP synthesis. Finally, QGFSOP expressions are translated into quantum cost optimized quaternary quantum circuits using: (1) newly developed quaternary quantum gate realizations of controlled Feynman and Toffoli gate that are optimized in terms of quantum cost, (2) use of composite literals consisting of 1 digit and M–S gates. Performance evaluation against existing works in the literature determined that our proposed method achieves an average QGFSOP expression product term savings of 32.66 %. Also, the synthesized QGFSOP circuits were evaluated in terms of quantum cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号