首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 593 毫秒
1.
一种频率稳定的低功耗振荡器电路设计   总被引:1,自引:1,他引:0  
设计了一种频率稳定的低功耗张弛振荡器电路。采用恒流源对电容两端同时充电和放电,然后将电容两端电压送入后级比较器进行判决,使得输出频率只与恒流源电流、电容以及比较器比较窗口相关。该电路采用GSMC 0.18μm CMOS工艺,在5 V电源电压以及室温条件下仿真,输出频率为123.6 kHz,平均电流消耗为2.67μA;在2 V~5.5 V电源电压和-40℃-+85℃的温度变化范围内,输出频率精度在-6.5%-1.3%范围内。  相似文献   

2.
针对在较宽的电源电压和温度变化范围内一般的振荡器频率误差较大的问题,研究并设计了一种广泛用于电荷泵(ChargePump)电路和DC/DC电压转换电路的高稳定性的CMOS型OTA-C张弛振荡器;该振荡器利用基准电流源产生的恒流源对电容进行充放电,同时利用高速度、低功耗的跨导运算放大器OTA作比较器比较阈值电压,再经整形滤波电路产生频率为1MHz方波信号;该电路采用0.6μm的CMOS工艺设计,利用Hspice进行仿真验证,结果表明,温度在-40℃~85℃,同时电源电压在2.6V~5.5V之间变化时,该张弛振荡器振荡频率随温度和电源电压的变化很小,总体误差在±2.5%以内,比较适合于产生低速时钟信号;此电路已成功集成到某型DC/DC电压转换芯片之中。  相似文献   

3.
针对传统电流源受工艺参数影响较大的问题,提出了一种利用电压差平方电路来解决这个问题的思路;设计了一种新颖的受工艺参数影响较小的基准电流源电路,该电路采用0.6μm的BiCMOS工艺设计,利用Hspice进行仿真验证;结果表明,该电路在典型边界条件下-40℃~85℃范围内输出基准电流温度系数为17ppm/℃,变化率约0.2%,在6种不同边界条件下输出基准电流变化约为±1.72%。  相似文献   

4.
设计了一种利用电阻比值校正一阶温度系数带隙基准电路的非线性温度特性来实现低温度系数的高精度低温度系数带隙基准源;同时设置了修调电路提高基准电压的输出精度.该带隙基准源采用0.8μm BiCMOS(Bipolar-CMOS)工艺进行流片,带隙基准电路所占面积大小为0.04 mm2.测试结果表明:在5 V电源电压下,在温度-40℃~125℃范围内,基准电压的温度系数为1.2×10-5/℃,基准电流的温度系数为3.77×10-4/℃;电源电压在4.0 V~7.0 V之间变化时,基准电压的变化量为0.4 mV,电源调整率为0.13 mV/V;基准电流的变化量为变化量约为0.02μA,电源调整率为6.7 nA/V.  相似文献   

5.
设计了一种新型的、不随电源电压变化的、温度系数很小的nA量级CMOS基准电流源,并分析了该电路的工作原理。该基准电流源不需要使用电阻,大大节省了芯片的面积。基于TSMC 0.18μmCMOS厚栅工艺,使用Spectre对电路进行了仿真。仿真结果表明,在输出基准电流为46 nA的情况下,该电路的温度系数为24.33 ppm/℃,输出电流变化率仅为0.028 9%/V,电源抑制比(PSRR)最高可达-85 dB,电路消耗的电流小于200 nA。  相似文献   

6.
设计了RC充电时间过零点不变性振荡器,该振荡器提供对电压和温度不敏感的高精度高稳定性时钟信号。分析并推导了RC充电过程中过零电压的时间不随电源电压变化的特性,采用温度补偿技术最大限度地保证了RC充电过程中过零电压的时间不随温度变化。基于180 nm工艺实现了该振荡器,仿真结果表明,该振荡器可以稳定输出2 MHz,电压从2.5 V~5.5 V的频率波动小于1%,温度从-40℃~125℃的频率波动小于1%,PVT条件下的最大电流不超过150μA。  相似文献   

7.
设计了一个带电源电压补偿和温度补偿的低功耗环形振荡器电路,环形振荡器采用受限于PTAT电流的反相器和普通CMOS反相器级联结构。由于电源电压和温度对这两种反相器传播延时的影响是相反的,利用这种相反的特性使得振荡器输出频率在电源电压和温度特性上得到补偿。该电路采用0.18μm CMOS工艺,测试结果显示在5 V电源电压以及27℃温度条件下,输出频率为263 k Hz,平均电流消耗为2.5μA。在3.5 V~5.5 V电源电压和-40℃~85℃的温度变化范围内,输出频率偏差在-2.3%~6.5%范围内。  相似文献   

8.
一种二阶补偿带隙基准设计   总被引:1,自引:1,他引:0  
基于分段补偿原理和MOS管的漏极电流是过驱动电压的平方关系函数,提出了一种新颖的二阶补偿结构,仅引入一股与温度成平方关系的电流,既补偿了低温阶段的基准电压,又补偿了高温阶段的基准电压,大大提高了基准电压源随温度变化的稳定性。采用0.5μm BCD工艺对电路进行仿真,结果表明,输出电压为1.24 V,温度范围在-35℃~135℃时,温度系数为2.82 ppm/℃;在低频时,电源抑制比达到了75.6 dB。  相似文献   

9.
《电子技术应用》2018,(2):16-19
为了满足一种高速、高精度DAC的设计要求。通过带隙基准电压源的基本设计原理,设计了一种实用型的基准电压源,获得了一个快速启动、高稳定性的电压基准电路。基于40 nm的CMOS标准工艺并用cadence软件进行了后仿真,仿真结果表明在室温下,电源电压为2.5 V时输出基准电压为1.184 V;启动时间为0.5μs;消耗功耗为0.185 5 mW;在-15℃~75℃的温度范围内温度漂移系数为8.7×10~(-5)/℃;在低频时电源电压抑制比为-85 dB;绘制版图的面积大小仅为154.799μm×48.656μm。  相似文献   

10.
基于IBM 0.18μm SiGe BICMOS工艺,采用温度脉冲转换方式设计了一种应用于无源RFID标签的温度传感器。与绝对温度呈正比(PTAT)的电流源和电流饥饿环型振荡器产生频率与温度呈正相关的振荡信号,作为计数器的时钟信号;用数字模块对接收的帧头代码进行处理得到一个宽度为200μs的脉冲信号,作为计数器的使能信号;利用时域数字量化方式就可以得到不同温度下的数字信号。温度传感器总面积为0.03 mm2,温度在-100~120℃范围内变化时,振荡器输出频率范围由800 kHz~1.8 MHz。在1.8 V电源电压下,温度传感器平均输出电流约为13μA,芯片测试结果的有效分辨率可以达到0.864 LSB/℃。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号