首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper is concerned with the fault estimation for a class of discrete‐time switched nonlinear systems with mixed time delays. The fault existing in the system is assumed to be characterized by an external system, which incorporates the fault's prior knowledge to the considered systems. The fault estimator is designed by using the multiple Lyapunov–Krasovskii functional and average dwell‐time approach. Sufficient conditions in the form of linear matrix inequalities (LMIs) are developed to ensure the resulting error system is exponentially stable with an optimized disturbance attenuation level. The gain matrices of the estimator can be easily determined by using the standard optimization toolboxes. Finally, numerical examples and simulation results with the help of real‐time systems are given to illustrate the effectiveness and advantages of the obtained results. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
This paper addresses the passivity‐based control problem for a class of time‐varying delay systems subject to nonlinear actuator faults and randomly occurring uncertainties via fault‐tolerant controller. More precisely, the uncertainties are described in terms of stochastic variables, which satisfies Bernoulli distribution, and the existence of actuator faults are assumed not only linear but also nonlinear, which is a more general one. The main objective of this paper is to design a state feedback‐reliable controller such that the resulting closed‐loop time‐delay system is stochastically stable under a prescribed mixed and passivity performance level γ>0 in the presence of all admissible uncertainties and actuator faults. Based on Lyapunov stability method and some integral inequality techniques, a new set of sufficient conditions is obtained in terms of linear matrix inequality (LMI) constraints to ensure the asymptotic stability of the considered system. Moreover, the control design parameters can be computed by solving a set of LMI constraints. Finally, two examples including a quarter‐car model are provided to show the efficiency and usefulness of the proposed control scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
This article investigates the event‐triggered (ET) states feedback robust control problem for a class of continuous‐time networked semi‐Markov jump systems (S‐MJSs). An ET scheme, which depends on semi‐Markov process, is presented to design a suitable controller and save communication resources. To cope with the network transmission delay phenomenon, a time‐delay S‐MJSs model under the ET scheme is introduced to describe this phenomenon. Then, it is assumed that the communication links between event detector and zero‐order holder are imperfect, where the signal quantization and the actuator fault occur simultaneously. The sufficient conditions are derived by means of linear matrix inequalities approach, which guarantees the stochastic stability of the constructed time‐delay S‐MJSs in an optimized performance level. Based on these criteria, the parameters of controller under the ET scheme are readily calculated. Some simulation results with respect to F‐404 aircraft engine system for two kinds of ET parameters are given to validate the proposed method.  相似文献   

4.
This paper investigates stability of nonlinear control systems under intermittent information. Following recent results in the literature, we replace the traditional periodic paradigm, where the up‐to‐date information is transmitted and control laws are executed in a periodic fashion, with the event‐triggered paradigm. Building on the small gain theorem, we develop input–output triggered control algorithms yielding stable closed‐loop systems. In other words, based on the currently available (but outdated) measurements of the outputs and external inputs of a plant, a mechanism triggering when to obtain new measurements and update the control inputs is provided. Depending on the noise in the environment, the developed algorithm yields stable, asymptotically stable, and ‐stable (with bias) closed‐loop systems. Control loops are modeled as interconnections of hybrid systems for which novel results on ‐stability are presented. The prediction of a triggering event is achieved by employing ‐gains over a finite horizon. By resorting to convex programming, a method to compute ‐gains over a finite horizon is devised. Finally, our approach is successfully applied to a trajectory tracking problem for unicycles. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
The paper presents a robust fault estimation approach for a class of nonlinear discrete‐time systems. In particular, two sources of uncertainty are present in the considered class of systems, that is, an unknown input and an exogenous external disturbance. Thus, apart from simultaneous state and fault estimation, the objective is to decouple the effect of an unknown input while minimizing the influence of the exogenous external disturbance within the framework. The resulting design procedure guarantees that a prescribed disturbance attenuation level is achieved with respect to the state and fault estimation error while assuring the convergence of the observer. The core advantage of the proposed approach is its simplicity by reducing the fault estimation problem to matrix inequalities formulation. In addition, the design conditions ensure the convergence of the observer with guaranteed performance. The effectiveness of the proposed approach is demonstrated by its application to a twin rotor multiple‐input multiple‐output system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the problem of dissipativity‐based asynchronous control for a class of discrete‐time Markov jump systems. A unified framework to design a controller for discrete‐time Markov jump systems with mixed time delays is proposed, which is fairly general and can be reduced to a synchronous controller or a mode‐independent controller. Based on a stochastic Lyapunov function approach, which fully utilizes available information of the system mode and the controller, a sufficient condition is established to ensure the stochastic stability and strictly ( , , ) dissipative performance of the resulting closed‐loop system. Finally, the effectiveness and validity of the proposed method are illustrated with a simulation example.  相似文献   

7.
This paper focuses on the problem of finite‐time H control for one family of discrete‐time uncertain singular Markovian jump systems with sensor fault and randomly occurring nonlinearities through a sliding mode approach. The failure of sensor is described as a general and practical continuous fault model. Nonlinear disturbance satisfies the Lipschitz condition and occurs in a probabilistic way. Firstly, based on the state estimator, the discrete‐time close‐loop error system can be constructed and sufficient criteria are provided to guarantee the augment system is sliding mode finite‐time boundedness and sliding mode H finite‐time boundedness. The sliding mode control law is synthesized to guarantee the reachability of the sliding surface in a short time interval, and the gain matrices of state feedback controller and state estimator are achieved by solving a feasibility problem in terms of linear matrix inequalities through a decoupling technique. Finally, numerical examples are given to illustrate the effectiveness of the proposed method.  相似文献   

8.
By applying the It formula, the Gronwall inequality, and the law of large numbers technique, a new simple sufficient inequality condition is presented for the almost surely exponential stability of the stochastic Cohen‐Grossberg neural networks with impulse control and time‐varying delays. Moreover, a new result is also given for the existence of unique states of the systems. An impulsive controller and a suitable noise controller are also given at the same time. The condition contains and improves some of the previous results in the earlier references.  相似文献   

9.
This paper considers discrete‐time large‐scale networked control systems with multiple local communication networks connecting sensors, controllers, and actuators. The local networks operate asynchronously and independently of each other in the presence of variable sampling intervals, transmission delays, and scheduling protocols (from sensors to controllers). The time‐delay approach that was recently suggested to decentralized stabilization of large‐scale networked systems in the continuous time is extended to decentralized control in the discrete time. An appropriate Lyapunov‐Krasovskii method is presented that leads to efficient LMI conditions for the exponential stability and l2‐gain analysis of the closed loop large‐scale system. Differences from the continuous‐time results are discussed. A numerical example of decentralized control of 2 coupled cart‐pendulum systems illustrates the efficiency of the results.  相似文献   

10.
11.
In this paper, the problems of exponential stability and ‐gain analysis of event‐triggered networked control systems (NCSs) with network‐induced delays are studied. We first propose event‐triggering conditions in the sensor side and controller side, respectively. Because the implementation of our event‐triggering scheme only needs periodic supervision of the system state at the constant sampling instants, instead of being monitored continuously, it is expected that the scheme will improve the resource utilization. Taking the network‐induced delays into account and using delay system approach, we constructed a unified model of NCSs with hybrid event‐triggering schemes. On the basis of this model, sufficient conditions for the exponential stability and ‐gain analysis are developed in the form of LMIs by using a discontinuous Lyapunov–Krasovskii functional approach. Moreover, the corresponding results can be further extended to more general cases, where the system matrices of the considered plant contain parameter uncertainties, represented in either polytopic or norm‐bounded frameworks. In addition, as a special case, we also present the exponential stability, ‐gain analysis, and the control feedback gain design of event‐triggered NCSs without considering the effects of network‐induced delays and event‐triggering condition in the controller side. Finally, a simulation example is provided to illustrate the usefulness and effectiveness of the proposed hybrid event‐triggering schemes.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
This paper investigates the input‐to‐state stability (ISS) issue for discrete‐time dynamical networks (DDNs) with time delays. Firstly, a general comparison principle for solutions of DDNs is proposed. Then, based on this general comparison principle, three kinds of ISS‐type comparison principles for DDNs are established, including the comparison principle for input‐to‐state ‐stability, ISS, and exponential ISS. The ISS‐type comparison principles are then used to investigate stability properties related to ISS for three kinds (linear, affine, and nonlinear) of DDNs. It shows that the ISS property of a DDN can be derived by comparing it with a linear or lower‐dimension DDN with known ISS property. By using methods such as variation of parameters, uniform M‐matrix, and the ISS‐type comparison principle, conditions of global exponential ISS for time‐varying linear DDNs with time delays are derived. Moreover, the obtained ISS results for DDNs are extended to the hybrid DDNs with time delays. As one application, the synchronization within an error bound in the sense of ISS is achieved for DDNs with coupling time delays and external disturbances. Finally, two examples are given to illustrate the results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
This paper focuses on the problem of semiglobal finite‐time synchronization of stochastic complex networks via an intermittent control strategy. By establishing a finite‐time criterion condition and a novel finite‐time ‐operator differential inequality, combined with convex techniques, some sufficient conditions are obtained to ensure finite‐time synchronization for stochastic complex networks with time delays. An effective controller is given to guarantee inner finite‐time synchronization, especially for a nondelayed dynamic system. This paper provides a simple controller. Finally, a numerical simulation is given to demonstrate the effectiveness of our results.  相似文献   

14.
This article addresses the output feedback control for discrete‐time Markov jump linear systems. With fully known transition probability, sufficient conditions for an internal model based controller design are obtained. For the case where the transition probabilities are uncertain and belong to a convex polytope with known vertices, we provide a sufficient LMI condition that guarantees the norm of the closed‐loop system is below a prescribed level. That condition can be improved through an iterative procedure. Additionally, we are able to deal with the case of cluster availability of the Markov mode, provided that some system matrices do not vary within a given cluster, an assumption that is suitable to deal with packet dropout models for networked control systems. A numerical example shows the applicability of the design and compares it with previous results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with the fault estimation problem for a class of linear time‐delay systems with intermittent fault and measurement noise. Different from existing observer‐based fault estimation schemes, in the proposed design, an iterative learning observer is constructed by using the integrated errors composed of state predictive error and tracking error in the previous iteration. First of all, Lyapunov function including the information of time delay is proposed to guarantee the convergence of system output. Subsequently, a novel fault estimation law based on iterative learning scheme is presented to estimate the size and shape of various fault signals. Upon system output convergence analysis, we proposed an optimal function to select appropriate learning gain matrixes such that tracking error converges to zero, simultaneously to ensure the robustness of the proposed iterative learning observer which is influenced by measurement noise. Note that, an improved sufficient condition for the existence of such an estimator is established in terms of the linear matrix inequality (LMI) by the Schur complements and Young relation. In addition, the results are both suit for the systems with time‐varying delay and the systems with constant delay. Finally, three numerical examples are given to illustrate the effectiveness of the proposed methods and two comparability examples are provided to prove the superiority of the algorithm.  相似文献   

16.
This paper deals with the problem of exponential filtering for singular Markovian jump systems with time‐varying delays subject to sensor failures. The main objective is to design a reliable filtering such that the considered filtering error system in the presence of a time‐varying delay and sensor failures is mean‐square exponentially admissible with a specified decay rate and simultaneously satisfies an performance. First, the delay interval is partitioned into m subintervals and a novel mode‐dependent stochastic Lyapunov‐Krasovskii functional is constructed. By using the reciprocally convex inequality in each subinterval, sufficient conditions of exponential performance analysis are developed for the considered filtering error system. Then, based on these conditions, the existence conditions of the desired reliable filter are derived and the filter parameters are obtained. It should be mentioned that all the results presented here are not only dependent on the time delay but also dependent on the decay rate and the partitioning size. Furthermore, all the conditions are established in terms of strict linear matrix inequalities. Finally, two numerical examples are given to illustrate the less conservatism and effectiveness of the proposed methods.  相似文献   

17.
Robust control of parameter‐dependent input delay linear parameter‐varying (LPV) systems via gain‐scheduled dynamic output‐feedback control is considered in this paper. The controller is designed to provide disturbance rejection in the context of the induced ‐norm or the norm of the closed‐loop system in the presence of uncertainty and disturbances. A reciprocally convex approach is employed to bound the Lyapunov‐Krasovskii functional derivative and extract sufficient conditions for the controller characterization in terms of linear matrix inequalities (LMIs). The approach does not require the rate of the delay to be bounded, hence encompasses a broader family of input‐delay LPV systems with fast‐varying delays. The method is then applied to the air‐fuel ratio (AFR) control in spark ignition (SI) engines where the delay and the plant parameters are functions of the engine speed and mass air flow. The objectives are to track the commanded AFR signal and to optimize the performance of the three‐way catalytic converter (TWC) through the precise AFR control and oxygen level regulation, resulting in improved fuel efficiency and reduced emissions. The designed AFR controller seeks to provide canister purge disturbance rejection over the full operating envelope of the SI engine in the presence of uncertainties. Closed‐loop simulation results are presented to validate the controller performance and robustness while meeting AFR tracking and disturbance rejection requirements.  相似文献   

18.
In this paper, we propose contributions on the stabilization and control of switched linear systems subject to time‐delays through the assignment of the switching law. As a first step, based on previous results related to switched linear systems with no time‐delays and exploiting the concept of piecewise quadratic Lyapunov–Krasovskii functionals, we solve the problem of finding suitable state‐dependent switching laws ensuring the prescribed control objectives. Secondly, we extend such results and present a strategy to construct an output feedback switching law, based on the available measurements made on the system. In both cases, the design of the control strategy is done by computing a feasible solution to a set of matrix inequalities associated to the modes of the switched linear system. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the problem of adaptive fault‐tolerant control for a class of linear systems with time‐varying actuator faults. The outage and loss‐of‐effectiveness fault cases are covered. An active fault compensation control law was designed in two steps. Firstly, the time‐varying fault parameters were estimated based on a novel adaptive observer. Compared with the traditional adaptive observer, the actuator fault estimations are faster and the high‐frequency oscillations can be attenuated effectively. Such oscillations are usually caused by increasing the gains of adaptive laws to deal with abrupt changes in system dynamics. Then, based on online estimations of the fault parameters, an adaptive fault‐tolerant controller was constructed to compensate for the loss of actuator effectiveness and to eliminate the effect of fault estimation error. The asymptotic stability and an adaptive performance of a closed‐loop system can be guaranteed, even in the case of actuator faults and disturbances. Simulation results are given to verify the effectiveness and superiority of the proposed method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We present novel theoretical concepts for linear time‐periodic systems with multiple delays, which are closely related to the spectral properties and Lyapunov matrices. At the basis of the main results is the associated dual system, constructed by transposition of the systems matrices and affine transformations of their arguments. We introduce, for the first time, the concepts of the norm and the dual Lyapunov matrix of periodic systems with delays. We show that the primal and dual system have the same norm, characterized by primal and dual delay Lyapunov equations, which extend the well‐known results for time‐invariant systems with delays, and periodic systems without delays. Having at hand the pair of primal‐dual Lyapunov matrices, along with some energy interpretations, allow us to generalize the concept of position balancing and explore its potential for model reduction. The obtained results are illustrated by several examples, including the delayed Mathieu equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号