首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
基于主动学习的加权支持向量机的分类   总被引:1,自引:1,他引:0  
用支持向量机SVM进行分类时,针对在某些机器学习中,存在训练样本获取代价过大,且训练样本中类的数量不对称的问题,提出了基于主动学习策略的加权支持向量机.其在机器学习的进程中,每次从候选样本集中,主动选择最有利于改善分类器性能的n个新样本添加到训练样本中进行学习,引入类权重因子和样本权重因子,将惩罚参数与类权重因子和样本权重因子联系.实验结果表明,该方法能够有效减少训练样本数量,解决类的数量不对称的样本产生的最优分界面偏移的问题,使分类器获得较好的分类性能.  相似文献   

2.
基于平均期望间隔的多标签分类主动学习方法   总被引:1,自引:0,他引:1       下载免费PDF全文
刘端阳  邱卫杰 《计算机工程》2011,37(15):168-170
针对多标签主动学习速度较慢的问题,提出一种基于平均期望间隔的多标签分类的主动学习方法。计算支持向量机分类器中的期望间隔,并将其作为样本选择标准。实验结果表明,该方法在分类精度、Hamming Loss、Coverage等评价标准上优于基于决策值和后验概率等主动学习策略,能更好地评价未标记样本,有效提高分类精度和速度。  相似文献   

3.
支持向量机是重要的机器学习方法之一,已成功解决了许多实际的分类问题。围绕如何提高支持向量机的分类精度与训练效率,以分类过程为主线,主要综述了在训练支持向量机之前不同的特征选取方法与学习策略。在此基础上,比较了不同的特征选取方法SFS,IWSS,IWSSr以及BARS的分类精度,分析了主动学习策略与支持向量机融合后获得的分类器在测试集上的分类精度与正确率/召回率平衡点两个性能指标。实验结果表明,包装方法与过滤方法相结合的特征选取方法能有效提高支持向量机的分类精度和减少训练样本量;在标签数据较少的情况下,主动学习能达到更好的分类精度,而为了达到相同的分类精度,被动学习需要的样本数量必须要达到主动学习的6倍。  相似文献   

4.
 由于二手车推荐的数据集具有非平衡特性,因此,二手车推荐可视为非平衡分类问题,可借助解决非平衡分类问题的方法来实现二手车推荐。本文对非平衡数据分类的数据集重构进行研究,通过分析合成少数类过采样方法(Synthetic Minority Over-sampling Technique, SMOTE)的特点与不足,提出合成少数类过采样过滤器方法(Synthetic Minority Over-sampling Technique Filter, SmoteFilter),对SMOTE方法合成样本进行过滤,减少合成样本中的噪声数据,提高训练样本“质量”。使用支持向量机对SMOTE合成的数据和SmoteFilter合成的数据进行实验对比,结果表明SmoteFilter方法相较传统的SMOTE过采样方法,提高了二手车推荐中少数类的预测精度,提升了对二手车推荐的整体预测性能。  相似文献   

5.
Bagging组合的不平衡数据分类方法   总被引:1,自引:0,他引:1       下载免费PDF全文
秦姣龙  王蔚 《计算机工程》2011,37(14):178-179
提出一种基于Bagging组合的不平衡数据分类方法CombineBagging,采用少数类过抽样算法SMOTE进行数据预处理,在此基础上利用C-SVM、径向基函数神经网络、Random Forests 3种不同的基分类器学习算法,分别对采样后的数据样本进行Bagging集成学习,通过投票规则集成学习结果。实验结果表明,该方法能够提高少数类的分类准确率,有效处理不平衡数据分类问题。  相似文献   

6.
基于集成的非均衡数据分类主动学习算法   总被引:1,自引:0,他引:1  
当前,处理类别非均衡数据采用的主要方法之一就是预处理,将数据均衡化之后采取传统的方法加以训练.预处理的方法主要有过取样和欠取样,然而过取样和欠取样都有自己的不足,提出拆分提升主动学习算法SBAL( Split-Boost Active Learning),该算法将大类样本集根据非均衡比例分成多个子集,子集与小类样本集合并,对其采用AdaBoost算法训练子分类器,然后集成一个总分类器,并基于QBC( Query-by-committee)主动学习算法主动选取有效样本进行训练,基本避免了由于增加样本或者减少样本所带来的不足.实验表明,提出的算法对于非均衡数据具有更高的分类精度.  相似文献   

7.
为了改善传统支持向量机SVM对不平衡数据集中少数类的分类效果,提出一种基于改进灰狼算法(IGWO)的过采样方法——IGWOSMOTE。首先,改进初始灰狼种群的生成形式,由SVM的惩罚因子、核参数、特征向量和少数类的采样率组成灰狼个体;然后,经由灰狼优化过程智能搜索获得最优相关参数和最优采样率组合,进行重新采样供分类器学习及预测。通过对6个UCI数据集的分类实验得出:IGWOSMOTE+SVM较传统SMOTE+SVM方法在少数类分类精度上提高了6.3个百分点,在整体数据集分类精度上提高了2.1个百分点,IGWOSMOTE可作为一种新的过采样分类方法。  相似文献   

8.
在机器学习及其分类问题时经常会遇到非平衡数据集,为了提高非平衡数据集分类的有效性,提出了基于商空间理论的过采样分类算法,即QMSVM算法。对训练集中多数类样本进行聚类结构划分,所得划分结果和少数类样本合并进行线性支持向量机(SVM)学习,从而获取多数类样本的支持向量和错分的样本粒;另一方面,获取少数类样本的支持向量和错分的样本,进行SMOTE采样,最后把上述得到的两类样本合并进行SVM学习,这样来实现学习数据集的再平衡处理,从而得到更加合理的分类超平面。实验结果表明,和其他几种算法相比,所提算法虽在正确分类率上有所降低,但较大改善了g_means值和acc+值,且对非平衡率较大的数据集效果会更好。  相似文献   

9.
一种基于混合重取样策略的非均衡数据集分类算法   总被引:1,自引:0,他引:1  
非均衡数据是分类中的常见问题,当一类实例远远多于另一类实例,则代表类非均衡,真实世界的分类问题存在很多类别非均衡的情况并得到众多专家学者的重视,非均衡数据的分类问题已成为数据挖掘和模式识别领域中新的研究热点,是对传统分类算法的重大挑战。本文提出了一种新型重取样算法,采用改进的SMOTE算法对少数类数据进行过取样,产生新的少数类样本,使类之间数据量基本均衡,然后再根据SMO算法的特点,提出使用聚类的数据欠取样方法,删除冗余或噪音数据。通过对数据集的过取样和清理之后,一些有用的样本被保留下来,减少了数据集规模,增强支持向量机训练执行的效率。实验结果表明,该方法在保持整体分类性能的情况下可以有效地提高少数类的分类精度。  相似文献   

10.
成鹏  汪西莉 《计算机工程》2011,37(12):166-169
提出一种基于相似度融合的主动支持向量机算法,利用未标记样本和标记样本,结合支持向量机的方法实现主动学习.实验结果表明,该算法与普通主动学习的支持向量机相比,在保证分类器性能的情况下,可以减少标记样本的数目,抑制孤立样本对分类器的影响;在相同标记样本数目的情况下,该算法具有较高的分类精度.  相似文献   

11.
针对少数类样本合成过采样技术(Synthetic Minority Over-Sampling Technique, SMOTE)在合成少数类新样本时会带来噪音问题,提出了一种改进降噪自编码神经网络不平衡数据分类算法(SMOTE-SDAE)。该算法首先通过SMOTE方法合成少数类新样本以均衡原始数据集,考虑到合成样本过程中会产生噪音的影响,利用降噪自编码神经网络算法的逐层无监督降噪学习和有监督微调过程,有效实现对过采样数据集的降噪处理与数据分类。在UCI不平衡数据集上实验结果表明,相比传统SVM算法,该算法显著提高了不平衡数据集中少数类的分类精度。  相似文献   

12.
针对网络中存在的对等网络(P2P)流量泛滥导致的流量失衡问题,提出将非平衡数据分类思想应用于流量识别过程。通过引入合成少数类过采样技术(SMOTE)算法并进行改进,提出了均值SMOTE (M-SMOTE)算法,实现对流量数据的平衡化处理。在此基础上分别采用3种机器学习分类器:随机森林(RF)、支持向量机(SVM)、反向传播神经网络(BPNN)对处理后各类流量进行识别。理论分析与仿真结果表明,在不影响P2P流量识别准确率的前提下,与非平衡状态相比,引入SMOTE算法将非P2P流量的识别准确率平均提高了16.5个百分点,将网络流量的整体识别率提高了9.5个百分点;与SMOTE算法相比,M-SMOTE算法将非P2P流量的识别准确率与网络流量的整体识别率分别进一步提高了3.2个百分点和2.6个百分点。实验结果表明,非平衡数据分类思想可有效解决P2P流量过多导致的非P2P流量识别率低的问题,同时所提M-SMOTE算法具有更高的识别准确度。  相似文献   

13.
基于样本权重更新的不平衡数据集成学习方法   总被引:1,自引:0,他引:1  
不平衡数据的问题普遍存在于大数据、机器学习的各个应用领域,如医疗诊断、异常检测等。研究者提出或采用了多种方法来进行不平衡数据的学习,比如数据采样(如SMOTE)或者集成学习(如EasyEnsemble)的方法。数据采样中的过采样方法可能存在过拟合或边界样本分类准确率较低等问题,而欠采样方法则可能导致欠拟合。文中将SMOTE,Bagging,Boosting等算法的基本思想进行融合,提出了Rotation SMOTE算法。该算法通过在Boosting过程中根据基分类器的预测结果对少数类样本进行SMOTE来间接地增大少数类样本的权重,并借鉴Focal Loss的基本思想提出了根据基分类器预测结果直接优化AdaBoost权重更新策略的FocalBoost算法。对不同应用领域共11个不平衡数据集的多个评价指标进行实验测试,结果表明,相比于其他不平衡数据算法(包括SMOTEBoost算法和EasyEnsemble算法),Rotation SMOTE算法在所有数据集上具有最高的召回率,并且在大多数数据集上具有最佳或者次佳的G-mean以及F1Score;而相比于原始的AdaBoost,FocalBoost则在其中9个不平衡数据集上都获得了更优的性能指标。  相似文献   

14.
Imbalanced data classification, an important type of classification task, is challenging for standard learning algorithms. There are different strategies to handle the problem, as popular imbalanced learning technologies, data level imbalanced learning methods have elicited ample attention from researchers in recent years. However, most data level approaches linearly generate new instances by using local neighbor information rather than based on overall data distribution. Differing from these algorithms, in this study, we develop a new data level method, namely, generative learning (GL), to deal with imbalanced problems. In GL, we fit the distribution of the original data and generate new data on the basis of the distribution by adopting the Gaussian mixed model. Generated data, including synthetic minority and majority classes, are used to train learning models. The proposed method is validated through experiments performed on real-world data sets. Results show that our approach is competitive and comparable with other methods, such as SMOTE, SMOTE-ENN, SMOTE-TomekLinks, Borderline-SMOTE, and safe-level-SMOTE. Wilcoxon signed rank test is applied, and the testing results show again the significant superiority of our proposal.  相似文献   

15.
不平衡数据分析是智能制造的关键技术之一,其分类问题已成为机器学习和数据挖掘的研究热点。针对目前不平衡数据过采样策略中人工合成数据边缘化且需要降噪处理的问题,提出一种基于改进SMOTE(synthetic minority oversampling technique)和局部离群因子(local outlier factor,LOF)的过采样算法。首先对整个数据集进行[K]-means聚类,筛选出高可靠性样本进行改进SMOTE算法过采样,然后采用LOF算法删除误差大的人工合成样本。在4个UCI不平衡数据集上的实验结果表明,该方法对不平衡数据中少数类的分类能力更强,有效地克服了数据边缘化问题,将算法应用于磷酸生产中的不平衡数据,实现了该不平衡数据的准确分类。  相似文献   

16.
The Synthetic Minority Over Sampling TEchnique (SMOTE) is a widely used technique to balance imbalanced data. In this paper we focus on improving SMOTE in the presence of class noise. Many improvements of SMOTE have been proposed, mostly cleaning or improving the data after applying SMOTE. Our approach differs from these approaches by the fact that it cleans the data before applying SMOTE, such that the quality of the generated instances is better. After applying SMOTE we also carry out data cleaning, such that instances (original or introduced by SMOTE) that badly fit in the new dataset are also removed. To this goal we propose two prototype selection techniques both based on fuzzy rough set theory. The first fuzzy rough prototype selection algorithm removes noisy instances from the imbalanced dataset, the second cleans the data generated by SMOTE. An experimental evaluation shows that our method improves existing preprocessing methods for imbalanced classification, especially in the presence of noise.  相似文献   

17.
针对现有机器学习算法难以有效提高不均衡在线贯序数据中少类样本分类精度的问题,提出了一种基于主曲线的不均衡在线贯序极限学习机。该方法的核心思路是根据在线贯序数据的分布特性,均衡各类别样本,以减少少类样本合成过程中的盲目性,主要包括离线和在线两个阶段。离线阶段采用主曲线分别建立各类别样本的分布模型,利用少类样本合成过采样算法对少类样本过采样,并根据各样本点到对应主曲线的投影距离分别为其设定相应大小的隶属度,最后根据隶属区间削减多类和少类虚拟样本,进而建立初始模型。在线阶段对贯序到达的少类样本过采样,并根据隶属区间均衡贯序样本,进而动态更新网络权值。通过理论分析证明了所提算法在理论上存在损失信息上界。采用UCI标准数据集和实际澳门气象数据进行仿真实验,结果表明,与现有典型算法相比,该算法对少类样本的预测精度更高,数值稳定性更好。  相似文献   

18.
近年来不平衡分类问题受到广泛关注。SMOTE过采样通过添加生成的少数类样本改变不平衡数据集的数据分布,是改善不平衡数据分类模型性能的流行方法之一。本文首先阐述了SMOTE的原理、算法以及存在的问题,针对SMOTE存在的问题,分别介绍了其4种扩展方法和3种应用的相关研究,最后分析了SMOTE应用于大数据、流数据、少量标签数据以及其他类型数据的现有研究和面临的问题,旨在为SMOTE的研究和应用提供有价值的借鉴和参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号