首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films with LaNiO3 (LNO) as bottom electrodes have been grown on amorphous TiN buffered Si(1 0 0) substrates by pulsed laser deposition. It was found that highly (0 0 1)-oriented LNO films could be obtained even if TiN underlayers were amorphous. XRD analyses showed that the subsequently deposited PZT films were also preferentially (0 0 1)-oriented due to the template effect of the perovskite structured LNO films. Dielectric constant of the PZT thin films remained almost constant with frequency in the range from 103 to 106 Hz, and tangent loss was as small as 0.02 at high frequencies. The remnant polarization and coercive field of an Au/PZT/LNO capacitor were typically 20 μC/cm2 and 30 kV/cm, respectively. CV and IV characteristics revealed the capacitance and leakage current variations with applied voltage were asymmetric when the bottom electrode was negatively as well as positively biased, indicating that ferroelectric/electrode interfaces and space charges play an important role in the electrical properties of ferroelectric capacitors.  相似文献   

2.
Ferroelectric properties of direct-patterned PZT(PbZr0.52Ti0.48O3) films with 460 μm × 460 μm size and 510 nm thick were analyzed for applying to micro-detecting devices. A photosensitive solution containing ortho-nitrobenzaldehyde was used for the preparation of direct-patterned PZT film. PZT solution was coated on Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrate for three times to obtain half-micron thick film and three times of direct-patterning process were repeated to define a pattern on multi-layer PZT film. Through intermediate and final anneal procedure of direct-patterned PZT film, any shrinkage along horizontal direction was not observed within this experimental condition, i.e., the size of the pattern was preserved after annealing, only a thickness reduction was observed after each annealing treatment. Ferroelectric properties of direct-patterned PZT film with 460 μm × 460 μm size and 510 nm thick were compared with those of un-patterned conventional PZT film and shown to be almost the same. Through this work, the high potentiality of direct-patternable PZT film for applying to micro-devices without the introduction of physical damages from dry-etching could be confirmed.  相似文献   

3.
Improvements in the ferroelectric properties were obtained by controlling process parameters of the lead titanate (PTO) seed layer. Highly oriented (1 1 1) perovskite lead zirconate titanate (PZT) films yielded the largest polarization switching charges, with an improved retention behavior, compared to those of PZT films without a PbTiO3 seed layer. The degree of (1 1 1) orientation in a PZT perovskite film increased, when an additional heat treatment process was not applied during formation of the PTO seed layer. In addition, PTO seed layers showed the best results when 8% excess Pb was supplied.  相似文献   

4.
Thin films of polymethylmethacrylate (PMMA) doped with perylene provide selective, robust and easily prepared optical sensor films for NO2 gas with suitable response times for materials aging applications. The materials are readily formed as 200 nm thin spin cast films on glass from chlorobenzene solution. The fluorescence emission of the films (λmax=442 nm) is quenched upon exposure to NO2 gas through an irreversible reaction forming non-fluorescent nitroperylene. Infrared, UV–VIS and fluorescence spectroscopies confirmed the presence of the nitro adduct in the films. In other atmospheres examined, such as air and 1000 ppm concentrations of SO2, CO, Cl2 and NH3, the films exhibited no loss of fluorescence intensity over a period of days to weeks. Response curves were obtained for 1000, 100 and 10 ppm NO2 at room temperature with equilibration times varying from hours to weeks. The response curves were fit using a numerical solution to the coupled diffusion and a nonlinear chemical reaction problem assuming that the situation is reaction limiting. The forward reaction constant fitted to experimental data was kf∼0.06 (ppm min)−1.  相似文献   

5.
In order to reduce the response time of resistive oxygen sensors using porous cerium oxide thick film, it is important to ascertain the factors controlling response. Pressure modulation method (PMM) was used to find the rate-limiting step of sensor response. This useful method measures the amplitude of sensor output (H(f)) for the sine wave modulation of oxygen partial pressure at constant frequency (f). In PMM, “break” response time, which is minimum period in which the sensor responds precisely, can be measured. Three points were examined: (1) simulated calculations of PMM were carried out using a model of porous thick film in which spherical particles are connected in a three-dimensional network; (2) sensor response speed was experimentally measured using PMM; and (3) the diffusion coefficient and surface reaction coefficient were estimated by comparison between experiment and calculation. The plot of log f versus log H(f) in the high f region was found to have a slope of approximately −0.5 for both porous thick film and non-porous thin film, when the rate-limiting step was diffusion. Calculations showed the response time of porous thick film was 1/20 that of non-porous thin film when the grain diameter of the porous thick film was the same as the thickness of non-porous thin film. At 973 K, “break” response time (tb) of the resistive oxygen sensor was found by experiment to be 109 ms. It was concluded that the response of the resistive oxygen sensor prepared in this study was strongly controlled by diffusion at 923–1023 K, since the experiment revealed that the slope of plot of log f versus log H(f) in the high f region was approximately −0.5. At 923–1023 K, the diffusion coefficient of oxygen vacancy in porous ceria (DV) was expressed as follows: DV (m2s−1) = 5.78 × 10−4 exp(−1.94 eV/kT). At 1023 K, the surface reaction coefficient (K) was found to exceed 10−4 m/s.  相似文献   

6.
《Applied ergonomics》2011,42(1):138-145
IntroductionSubjective workload measures are usually administered in a visual–manual format, either electronically or by paper and pencil. However, vocal responses to spoken queries may sometimes be preferable, for example when experimental manipulations require continuous manual responding or when participants have certain sensory/motor impairments. In the present study, we evaluated the acceptability of the hands-free administration of two subjective workload questionnaires – the NASA Task Load Index (NASA-TLX) and the Multiple Resources Questionnaire (MRQ) – in a surgical training environment where manual responding is often constrained.MethodSixty-four undergraduates performed fifteen 90-s trials of laparoscopic training tasks (five replications of 3 tasks – cannulation, ring transfer, and rope manipulation). Half of the participants provided workload ratings using a traditional paper-and-pencil version of the NASA-TLX and MRQ; the remainder used a vocal (hands-free) version of the questionnaires. A follow-up experiment extended the evaluation of the hands-free version to actual medical students in a Minimally Invasive Surgery (MIS) training facility.ResultsThe NASA-TLX was scored in 2 ways – (1) the traditional procedure using participant-specific weights to combine its 6 subscales, and (2) a simplified procedure – the NASA Raw Task Load Index (NASA-RTLX) – using the unweighted mean of the subscale scores. Comparison of the scores obtained from the hands-free and written administration conditions yielded coefficients of equivalence of r = 0.85 (NASA-TLX) and r = 0.81 (NASA-RTLX). Equivalence estimates for the individual subscales ranged from r = 0.78 (“mental demand”) to r = 0.31 (“effort”). Both administration formats and scoring methods were equally sensitive to task and repetition effects. For the MRQ, the coefficient of equivalence for the hands-free and written versions was r = 0.96 when tested on undergraduates. However, the sensitivity of the hands-free MRQ to task demands (ηpartial2 = 0.138) was substantially less than that for the written version (ηpartial2 = 0.252). This potential shortcoming of the hands-free MRQ did not seem to generalize to medical students who showed robust task effects when using the hands-free MRQ (ηpartial2 = 0.396). A detailed analysis of the MRQ subscales also revealed differences that may be attributable to a “spillover” effect in which participants’ judgments about the demands of completing the questionnaires contaminated their judgments about the primary surgical training tasks.ConclusionVocal versions of the NASA-TLX are acceptable alternatives to standard written formats when researchers wish to obtain global workload estimates. However, care should be used when interpreting the individual subscales if the object is to make comparisons between studies or conditions that use different administration modalities. For the MRQ, the vocal version was less sensitive to experimental manipulations than its written counterpart; however, when medical students rather than undergraduates used the vocal version, the instrument’s sensitivity increased well beyond that obtained with any other combination of administration modality and instrument in this study. Thus, the vocal version of the MRQ may be an acceptable workload assessment technique for selected populations, and it may even be a suitable substitute for the NASA-TLX.  相似文献   

7.
A hybrid computational system, composed of the finite element method (FEM) and cascade neural network system (CNNs), is applied to the identification of three geometrical parameters of elastic arches, i.e. span l, height f and cross-sectional thickness h. FEM is used in the direct (forward) analysis, which corresponds to the mapping α = {l, f, h}  {ωj}, where: α – vector of control parameters, ωj – arch eigenfrequencies. The reverse analysis is related to the identification procedure in which the reverse mapping is performed {ωj}  {αi}. For the identification purposes a recurrent, three level CNNs of structure (Dk-Hk-1)s was formulated, where: k – recurrence step, s = I, II, III-levels of cascade system. The Semi-Bayesian approach is introduced for the design of CNNs applying the MML Maximum Marginal Likelihood) criterion. The computation of hyperparameters is performed by means of the Bayesian procedure evidence. The numerical analysis proves a great numerical efficiency of the proposed hybrid approach for both the perfect (noiseless) values of eigenfrequencies and noisy ones simulated by an added artificial noise.  相似文献   

8.
This paper reports on the measurements of displacement and blocking force of piezoelectric micro-cantilevers. The free displacement was studied using a surface profiler and a laser vibrometer. The experimental data were compared with an analytical model which showed that the PZT thin film has a Young's modulus of 110 GPa and a piezoelectric coefficient d31,f of 30 pC/N. The blocking force was investigated by means of a micro-machined silicon force sensor based on the silicon piezoresistive effect. The generated force was detected by measuring a change in voltage within a piezoresistors bridge. The sensor was calibrated using a commercial nano-indenter as a force and displacement standard. Application of the method showed that a 700 μm long micro-cantilever showed a maximum displacement of 800 nm and a blocking force of 0.1 mN at an actuation voltage of 5 V, within experimental error of the theoretical predictions based on the known piezoelectric and elastic properties of the PZT film.  相似文献   

9.
Ultrasonic transducers based on PZT-5A thick films deposited onto polycrystalline Al2O3 substrates using screen-printing were successfully fabricated. Considering the relatively high sintering temperature of PZT-5A thick films and better impedance matching characteristics with PZT-5A, polished polycrystalline Al2O3 were used as substrates. For electrodes, high quality platinum (Pt) was deposited by a thin film process, because the surface state of electrodes greatly affects the quality of piezoelectric films. Applying Pt/PZT-5A/Pt/Al2O3 structures, dual-element ultrasonic transducers were assembled. The assembled transducers included a wear plate (normally alumina with 40.21 × 106 kg/m2 s of impedance), backing (tungsten carbide-epoxy), electrical matching, an epoxy glue layer, and a housing. The optimum measurement ranges of 5 and 10 MHz ultrasonic transducers were 2.51–300.2 and 2.50–250.1 mm, respectively. From the time and frequency response measurements of the assembled 10 MHz DEUTs, the value of −20 dB level waveform duration and the −6 dB bandwidth was 481.8 ns and 34.4%, respectively. Also, the measurement accuracies of both 5 and 10 MHz DEUTs assembled in this study were below 0.1 and 0.4%, respectively.  相似文献   

10.
A novel vanadium oxide polypropylene carbonate modified glassy carbon electrode was developed and used for the measurement of ascorbic acid (AA). The electrode was prepared by casting a mixture of vanadium tri(isopropoxide) oxide (VO(OC3H7)3) and poly(propylene carbonate) (PPC) onto the surface of a glassy carbon electrode. The electrochemical behavior of the VO(OC3H7)3–PPC film modified glassy carbon electrode was investigated by cyclic voltammetry and amperometry. This modified electrode exhibited electrocatalytic response to the oxidation of ascorbic acid. Compared with a bare glassy carbon electrode, the modified electrode exhibits a 220 mV shift of the oxidation potential of ascorbic acid in the cathodic direction and a marked enhancement of the current response. The response current revealed a good linear relationship with the concentration of ascorbic acid in the range of 4 × 10−8 and 1 × 10−4 mol L−1 and the detection limit of 1.5 × 10−8 mol L−1 (S/N = 3) in the pH 8.06 Britton–Robinson solution. Quantitative recovery of the ascorbic acid in synthetic samples has been obtained and the interferences from different species have been studied. The method has been successfully applied to the determination of ascorbic acid in fruits. The concentrations of ascorbic acid measured by this method are in good agreement with the literature value. It is much promising for the modified films to be used as an electrochemical sensor for the detection of ascorbic acid.  相似文献   

11.
Piezocomposite ultasonic transducers for high-frequency microelectronics wire bonding have been developed to alleviate the intrinsic mode coupling and high mechanical quality factor (Qm) in piezoceramic transducers. In this paper, a 136 kHz transducer fabricated using lead zirconate titanate (PZT)/epoxy 1–3 piezocomposite rings with 77 μm epoxy width and 0.89 PZT volume fraction is presented, together with a PZT piezoceramic transducer of similar structure. With the guide of a finite-element modal analysis, the nature of most experimental resonance modes in the transducers is identified. The low lateral coupling of the composite rings effectively suppresses the non-axial and many other spurious resonances in the composite transducer, retaining only the axial-mode resonances. Due to the effect of epoxy damping, the composite transducer exhibits a 2.4-times reduction in Qm to a desired low value of 296. This transducer has good potential to be used in commercial wire bonders for enabling high-frequency wire-bonding technology.  相似文献   

12.
The layer-by-layer deposition technique was used to prepare polyelectrolyte multilayer (PEM) thin films that are sensitive to ethanol content in water. Cationic Chitosan was assembled with anionic acid dye, (phenyl amino)-5-[[4-(3-sulphonatophenyl) azo]-(1-naphthalenyl) azo]-1-naphthalenesulfonic acid disodium salt (Nylosan) on glass slide and characterized using UV–vis spectroscopy. The layer-by-layer deposition of Chitosan–Nylosan into PEM was studied by monitoring the increase in absorbance in the visible region (500–600 nm). The typical linear relationship between increase in absorbance and number of layers was found. The PEM thin films responded to increasing concentrations of ethanol in water with a shift of maximum absorbance (λmax) from 540 to 580 nm. This shift was also characterized by an increase in absorbance at 600 nm which was used to monitor the response of the thin film to ethanol content in water. The characteristic color shift of the Nylosan dye occurred at a higher ethanol concentration (from 10% to 45%) in the PEM compared to its usual shift in aqueous solution (from 0% to 30%). The Chitosan–Nylosan thin films response to ethanol content was found to be linear from 10% to 45% ethanol content, which renders them useful as ethanol sensing thin films.  相似文献   

13.
Polycrystalline lead titanate (PT) thin films in the range of 3–6 μm were crack and void free deposited on silicon substrates in a high rate gas flow sputtering process. Gas flow sputtering uses the hollow cathode effect which results into high deposition rates of about 120 nm/min. (1 1 1) Textured platinum was used as bottom electrode to assist the nucleation of PT.Material properties of the PT thin films as well as the Pt bottom electrode like topography, morphology, chemical composition, and structure are evaluated. The sputtered PT layers show clearly Perovskite traces in XRD patterns, even the (1 1 1) texture of the Pt is partial transferred. The most difficult part is to fulfil the empirical formula PbTiO3. This problem is solved by stabilising the process parameters. It was shown that the temperature has got enormous influence at the stoichiometry.  相似文献   

14.
Insects and disease affect large areas of forest in the U.S. and Canada. Understanding ecosystem impacts of such disturbances requires knowledge of host species distribution patterns on the landscape. In this study, we mapped the distribution and abundance of host species for the spruce budworm (Choristoneura fumiferana) to facilitate landscape scale planning and modeling of outbreak dynamics. We used multi-temporal, multi-seasonal Landsat data and 128 ground truth plots (and 120 additional validation plots) to map basal area (BA), for 6.4 million hectares of forest in northern Minnesota and neighboring Ontario. Partial least-squares (PLS) regression was used to determine relationships between ground data and Landsat sensor data. Subsequently, BA was mapped for all forests, as well as for two specific host tree genera (Picea and Abies). These PLS regression analyses yielded estimates for overall forest BA with an R2 of 0.62 and RMSE of 4.67 m2 ha? 1 (20% of measured BA), white spruce relative BA with an R2 of 0.88 (RMSE = 12.57 m2 ha? 1 [20% of measured]), and balsam fir relative BA with an R2 of 0.64 (RMSE = 6.08 m2 ha? 1 [33% of measured]). We also used this method to estimate the relative BA of deciduous and coniferous species, each with R2 values of 0.86 and RMSE values of 9.89 m2 ha? 1 (23% of measured) and 9.78 m2 ha? 1 (16% of measured), respectively. Of note, winter imagery (with snow cover) and shortwave infrared-based indices – especially the shortwave infrared/visible ratio – strengthened the models we developed. Because ground measurements were made largely in forest stands containing spruce and fir, modeled results are not applicable to stands dominated by non-target conifers such as pines and cedar. PLS regression has proven to be an effective modeling tool for regional characterization of forest structure within spatially heterogeneous forests using multi-temporal Landsat sensor data.  相似文献   

15.
The lowest-energy structures and stabilities of the heterodinuclear clusters, CNLin (n = 1–10) and relevant CNLin+ (n = 1–10) cations, are studied using the density functional theory with the 6-311 + G(3df) basis set. The CNLi6 and CNLi5+ clusters are the first three-dimensional ones in the CNLin0/+ series, respectively, and the CN group always caps the Lin0/+ moiety in the CNLin0/+ (n = 1–9) configurations. The CN triple bond is found to be completely cleaved in the CNLi100/+ clusters where the C and N atoms are bridged by two Li atoms. The CNLin (n = 2–10) clusters are hyperlithiated molecules with delocalized valence electrons and consequently possess low VIP values of 3.780–5.674 eV. Especially, the CNLi8 and CNLi10 molecules exhibit lower VIPs than that of Cs atom and can be regarded as heterobinuclear superalkali species. Furthermore, these two superalkali clusters show extraordinarily large first hyperpolarizabilities of 19,423 and 42,658 au, respectively. For the CNLin+ cationic species, the evolution of the energetic and electronic properties with the cluster size shows a special stability for CNLi2+.  相似文献   

16.
Detection of hazardous chemical species by changing the electrical conductivity of a semiconductor matter is a proposed and applied way for decreasing their subsequent unpleasant effects. Recently, many examples of using inorganic or organic materials, polymeric, and also nano-sized species as sensors were reported in which, in some cases, those matters were strongly affective and suitable.In this project, we have made an assessment on whether the graphene segment or C20 fullerene, able to sense the existence of cyanogen chloride NCCl? In order to gain trustable results, the possible reaction pathways along with the adsorption kinetics were investigated. Moreover, the electronic density of states DOS showed that C20 fullerene senses the existence of cyanogen chloride agent with a clearer signal (ΔEg = 0.0110 eV) compared to the graphene segment (ΔEg = 0.0001 eV). Also the adsorption energy calculations showed that cyanogen chloride could be adsorbed by the fullerene in a multi-step process (Eads1 = −0.852 kcal mol−1; Eads2 = −0.446 kcal mol−1; Eads3 = −2.330 kcal mol−1).  相似文献   

17.
In this work, Ni oxide thin films, with thermal sensitivity superior to Pt and Ni thin films, were formed through annealing of Ni films deposited by a r.f. magnetron sputtering. The annealing was carried out in the temperature range of 300–500 °C under atmospheric conditions. Resistivity of the resulting Ni oxide films were in the range of 10.5 μΩ cm/°C to 2.84 × 104 μΩ cm/°C, depending on the extent of Ni oxidation. The temperature coefficient of resistance (TCR) of the Ni oxide films also depended on the extent of Ni oxidation; the average TCR of Ni oxide resistors, measured between 0 and 150 °C, were 5630 ppm/°C for the 300 °C and 2188 ppm/°C for 500 °C films. Because of their high resistivity and very linear TCR, Ni oxide thin films are superior to pure Ni and Pt thin films for flow and temperature sensor applications.  相似文献   

18.
This article aims at finding efficient hyperspectral indices for the estimation of forest sun leaf chlorophyll content (CHL, µg cmleaf? 2), sun leaf mass per area (LMA, gdry matter mleaf? 2), canopy leaf area index (LAI, m2leaf msoil? 2) and leaf canopy biomass (Bleaf, gdry matter msoil? 2). These parameters are useful inputs for forest ecosystem simulations at landscape scale. The method is based on the determination of the best vegetation indices (index form and wavelengths) using the radiative transfer model PROSAIL (formed by the newly-calibrated leaf reflectance model PROSPECT coupled with the multi-layer version of the canopy radiative transfer model SAIL). The results are tested on experimental measurements at both leaf and canopy scales. At the leaf scale, it is possible to estimate CHL with high precision using a two wavelength vegetation index after a simulation based calibration. At the leaf scale, the LMA is more difficult to estimate with indices. At the canopy scale, efficient indices were determined on a generic simulated database to estimate CHL, LMA, LAI and Bleaf in a general way. These indices were then applied to two Hyperion images (50 plots) on the Fontainebleau and Fougères forests and portable spectroradiometer measurements. They showed good results with an RMSE of 8.2 µg cm? 2 for CHL, 9.1 g m? 2 for LMA, 1.7 m2 m? 2 for LAI and 50.6 g m? 2 for Bleaf. However, at the canopy scale, even if the wavelengths of the calibrated indices were accurately determined with the simulated database, the regressions between the indices and the biophysical characteristics still had to be calibrated on measurements. At the canopy scale, the best indices were: for leaf chlorophyll content: NDchl = (ρ925 ? ρ710)/(ρ925 + ρ710), for leaf mass per area: NDLMA = (ρ2260 ? ρ1490)/(ρ2260 + ρ1490), for leaf area index: DLAI = ρ1725 ? ρ970, and for canopy leaf biomass: NDBleaf = (ρ2160 ? ρ1540)/(ρ2160 + ρ1540).  相似文献   

19.
20.
Heteroepitaxial indium tin oxide (ITO) films were grown on three differently oriented yttria-stabilized zirconia (YSZ) substrates ((1 0 0), (1 1 0), (1 1 1)) by rf magnetron sputtering, and their structural characteristics and electrical and gas sensing properties were investigated. The initially formed ITO exhibited an island structure on the very thin layer and became a continuous film after the prolonged deposition. The heteroepitaxial relationships between ITO films and YSZ substrates were confirmed by X-ray diffraction, pole figure, and high resolution transmission electron microscopy (HRTEM). The chemical composition, determined by X-ray photoelectron spectroscopy (XPS), was slightly different at early stage depending on the substrate orientation, but it became similar after the longer deposition. Hall measurements indicated that the electrical resistivity of ITO films decreased with increasing the deposition time (or film thickness) irrespective of the film orientation. The ITO film deposited on (1 1 0) YSZ for 10 s showed the highest electrical resistivity. The gas sensor fabricated from the ITO film on (1 1 0) YSZ deposited for 10 s showed the highest NO2 gas response at relatively low temperature (100 °C), which was attributed to the higher Sn concentration and higher surface roughness of that film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号