首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
节点标签是复杂网络中广泛存在的监督信息,对网络表示学习具有重要作用。基于此,提出了一种结合图自编码器与聚类的半监督表示学习方法(GAECSRL)。首先,以图卷积网络(GCN)和内积函数分别作为编码器和解码器,并构建图自编码器以形成信息传播框架;然后,在编码器生成的低维表示基础上增加k-means聚类模块,从而使图自编码器的训练过程和节点的类别分布划分形成自监督机制;最后,利用节点标签的判别信息对网络低维表示的类别划分进行指导,将网络表示生成、类别划分以及图自编码器的训练构建在一个统一的优化模型中,并获得融合节点标签信息的有效网络表示结果。在仿真实验中,将GAECSRL用于节点分类和链接预测任务。实验结果表明,相比DeepWalk、node2vec、全局结构信息图表示学习(GraRep)、结构化深度网络嵌入(SDNE)和用数据的转导式或归纳式嵌入预测标签和邻居(Planetoid),在节点分类任务中GAECSRL的Micro?F1指标提高了0.9~24.46个百分点,Macro?F1指标提高了0.76~24.20个百分点;在链接预测任务中,GAECSRL的AUC指标提高了0.33~9.06个百分点,说明GAECSRL获得的网络表示结果能有效提高节点分类和链接预测任务的性能。  相似文献   

2.
属性网络表示学习的目的是在保证网络中节点性质的前提下,结合结构和属性信息学习节点的低维稠密向量表示。目前属性网络表示学习方法忽略了网络中属性信息的学习,且这些方法中的属性信息与网络拓扑结构的交互性不足,不能高效融合网络结构和属性信息。针对以上问题,提出一种双路自编码器的属性网络表示学习(DENRL)算法。首先,通过多跳注意力机制捕获节点的高阶邻域信息;其次,设计低通拉普拉斯滤波器去除高频信号,并迭代获取重要邻居节点的属性信息;最后,构建自适应融合模块,通过结构和属性信息的一致性及差异性约束来增加对重要信息的获取,并通过监督两个自编码器的联合重构损失函数训练编码器。在Cora、Citeseer、Pubmed和Wiki数据集上的实验结果表明,与DeepWalk、ANRL(Attributed Network Representation Learning)等算法相比,DENRL算法在3个引文网络数据集上聚类准确率最高、算法运行时间最少,在Cora数据集上聚类准确率为0.775和运行时间为0.460 2 s;且DENRL算法在Cora和Citeseer数据集上链路预测精确率最高,分别达到了0...  相似文献   

3.
张元钧  张曦煌 《计算机应用》2021,41(7):1857-1864
针对动态网络节点之间链路预测的准确率低和运行时间长的情况,提出了一种以降噪自编码器(dAE)为框架,结合图卷积网络(GCN)和长短期记忆(LSTM)网络的动态网络表示学习模型dynGAELSTM。首先,该模型的前端采用GCN捕获动态图节点的高阶图邻域的特征信息;其次,将提取到的信息输入dAE的编码层以获取低维特征向量,并在LSTM网络上获取动态网络的时空依赖特征;最后,经dAE的解码层重建预测图,并与真实图对比来构建损失函数,从而优化模型完成链路预测。理论分析和仿真实验表明,dynGAELSTM模型相较于预测性能第二的模型在三个数据集上的预测性能分别提升了0.79、1.19和3.13个百分点,模型的运行时间降低了0.92%和1.73%。可见dynGAELSTM模型在链路预测任务中相较于现有模型精度提升,复杂度降低。  相似文献   

4.
近年来,图神经网络(Graph Neural Networks,GNNs)在网络表示学习领域中发挥着越来越重要的作用.然而,大多数现有的GNNs在每一层中只考虑节点的直接相连的(1阶)邻居,忽略了高阶邻域信息.在节点表示学习过程中引入高阶拓扑知识是一个关键问题.本文中,我们提出了多邻域注意力图卷积网络(Multi-neighboring Attention Graph Convolutional Networks,M AGCN).首先基于注意力机制使用多个邻域掩码从节点的不同阶邻居中学习多个节点表示,然后使用动态路由算法自适应地确定这些表示对最终节点表示的贡献,以聚合成最终的节点表示.在Cora、Citeseer和Pubmed 3个引文网络数据集上的节点分类实验表明,MAGCN比目前较先进的网络表示学习模型有更高的分类准确率.  相似文献   

5.
现有的基于网络表示学习的链路预测算法主要通过捕获网络节点的邻域拓扑信息构造特征向量来进行链路预测,该类算法通常只注重从网络节点的单一邻域拓扑结构中学习信息,而对多个网络节点在链路结构上的相似性方面研究不足。针对此问题,提出一种基于密集连接卷积神经网络(DenseNet)的链路预测模型(DenseNet-LP)。首先,利用基于网络表示学习算法node2vec生成节点表示向量,并利用该表示向量将网络节点的结构信息映射为三维特征数据;然后,利用密集连接卷积神经网络来捕捉链路结构的特征,并建立二分类模型实现链路预测。在四个公开的数据集上的实验结果表明,相较于网络表示学习算法,所提模型链路预测结果的ROC曲线下方面积(AUC)值最大提高了18个百分点。  相似文献   

6.
网络流量预测是有效保障用户QoS措施之一。当前深度学习为基础的网络算法预测中没有充分利用网络拓扑信息。为此,提出了基于高阶图卷积自编码器的网络流量预测模型。该流量预测模型基于软件定义网络(SDN)架构,利用高阶图卷积网络(GCN)获取网络拓扑中的多跳邻域之间的流量相互影响关系,采用门控递归单元(GRU)获取网络的时间相关性信息,利用自编码模型来实现无监督学习和预测。在Abilene网络上采用真实数据进行了仿真对比分析试验,结果表明,提出的方法在网络流量检测方面的MAPE值为41.56%,低于其它深度学习的方法,同时预测准确率方面也达到最优。  相似文献   

7.
网络聚类广泛应用于现实世界的各个领域,受到了越来越多的关注.由于保留了节点和链接关系的异质性,异质信息网络聚类相较于同质网络聚类具有更优的性能.然而,现有基于图神经网络的异质信息网络聚类忽略了节点属性以及拓扑结构对聚类的权重不同的问题.此外,这些方法仅对单一类型的目标节点聚类,而没有考虑其余类型节点的辅助作用.为此,提出了面向异质信息网络的双通道协同聚类算法(B3C),其能够有效地融合节点属性和拓扑结构,并挖掘异质节点间的潜在相关性,从而提高聚类性能.首先,设计了一个简单有效的双通道编码器以聚合拓扑结构及相似矩阵的邻域信息;接着,应用自训练聚类的同时学习异质信息网络表示以及优化聚类分配,并采用协同聚类机制,以对不同类型节点同时聚类;最后,利用三元中心损失(Triplet-Center Loss)学习具有区分度的节点表示,以凝聚相似节点,分离不相似节点.在公开数据集上进行了大量实验,验证了本文提出的双通道编码器性能相较于广泛使用的图神经网络编码器有显著提升,并且B3C精度优于现有的基于学习的异质信息网络聚类方法.  相似文献   

8.
樊玮  王慧敏  邢艳 《计算机应用》2021,41(4):1064-1070
现有的大多数网络表示学习方法很难兼顾网络中丰富的结构信息和属性信息,导致其后续任务,如分类、聚类等的效果不佳。针对此问题,提出一种基于自编码器的多视图属性网络表示学习模型(AE-MVANR)。首先,将网络的拓扑结构信息转化为拓扑结构视图(TSV),通过计算节点间相同属性共现频率来构造属性结构视图(ASV);然后,在两个视图上分别利用随机游走算法得到若干节点序列;最后,经过自编码器训练得到的序列,从而得到融合了结构信息和属性信息的节点表示向量。在几个真实数据集上进行了分类、聚类任务的大量实验,结果表明,所提AE-MVANR优于常用的仅基于网络结构的和同时基于网络结构信息及节点属性信息的网络表示学习方法,具体来说该模型的分类准确率最高提升43.75%,而其聚类结果的标准化互信息(NMI)和轮廓系数(Silhouette Coefficient)指标最高增幅分别为137.95%和1 314.63%,戴维森堡丁指数(DBI)最大降幅达45.99%。  相似文献   

9.
康雁  寇勇奇  谢思宇  王飞  张兰  吴志伟  李浩 《计算机科学》2021,48(z2):81-87,116
聚类作为数据挖掘和机器学习中最基本的任务之一,在各种现实世界任务中已得到广泛应用.随着深度学习的发展,深度聚类成为一个研究热点.现有的深度聚类算法主要从节点表征学习或者结构表征学习两个方面入手,较少考虑同时将这两种信息进行融合以完成表征学习.提出一种融合变分图注意自编码器的深度聚类模型FVGTAEDC(Deep Clustering Model Based on Fusion Varitional Graph Attention Self-encoder),此模型通过联合自编码器和变分图注意自编码器进行聚类,模型中自编码器将变分图注意自编码器从网络中学习(低阶和高阶)结构表示进行集成,随后从原始数据中学习特征表示.在两个模块训练的同时,为了适应聚类任务,将自编码器模块融合节点和结构信息的表示特征进行自监督聚类训练.通过综合聚类损失、自编码器重构数据损失、变分图注意自编码器重构邻接矩阵损失、后验概率分布与先验概率分布相对熵损失,该模型可以有效聚合节点的属性和网络的结构,同时优化聚类标签分配和学习适合于聚类的表示特征.综合实验证明,该方法在5个现实数据集上的聚类效果均优于当前先进的深度聚类方法.  相似文献   

10.
网络表征学习是当前信息网络数据表示的研究热点,相比于传统网络分析技术已显示出它的有效性和高效性.目前绝大多数研究仅将网络视为静态来处理,即网络结构不随时间演化而变化,而且很少考虑网络中丰富的节点属性信息,难以适应现实信息网络时刻变化的动态特性.同时考虑网络的动态性和节点属性,提出基于时空路径的动态属性网络表征学习(DAWalk),将结构特征与属性特征聚合为节点的嵌入表示.游走时空轨迹序列以捕获网络的结构特征以及动态演化趋势规律.在模型学习方面使用改进的自编码器模型,最小化序列中成对节点的距离损失,学习出序列节点对隐藏的高度非线性规律,使得学到的节点表示更具健壮性.实验表明,在可视化、链接预测、节点分类任务上,提出的DAWalk在3个数据集上的性能均优于其他基准算法.  相似文献   

11.
为了保留网络结构信息和节点特征信息,结合图卷积神经网络(GCN)和自编码器(AE),提出可扩展的半监督深度网络表示学习模型(Semi-GCNAE).利用GCN捕获节点的K阶邻域中所有节点的结构和特征信息,并将捕获的信息作为AE的输入.AE对GCN捕获的K阶邻域信息进行特征提取和非线性降维,并结合Laplacian特征映射保留节点的团簇结构信息.引入集成学习方法联合训练GCN和AE,使模型习得的节点低维向量表示能同时保留网络结构信息和节点特征信息.在5个真实数据集上的广泛评估表明,文中模型习得的节点低维向量表示可以有效保留网络的结构和节点特征信息,并在节点分类、可视化和网络重构任务上性能较优.  相似文献   

12.
知识图谱表示学习旨在将实体和关系映射到一个低维稠密的向量空间中。现有的大多数相关模型更注重于学习三元组的结构特征,忽略了三元组内的实体关系的语义信息特征和三元组外的实体描述信息特征,因此知识表达能力较差。针对以上问题,提出了一种融合多源信息的知识表示学习模型BAGAT。首先,结合知识图谱特征来构造三元组实体目标节点和邻居节点,并使用图注意力网络(GAT)聚合三元组结构的语义信息表示;然后,使用BERT词向量模型对实体描述信息进行嵌入表示;最后,将两种表示方法映射到同一个向量空间中进行联合知识表示学习。实验结果表明,BAGAT性能较其他模型有较大提升,在公共数据集FB15K-237链接预测任务的Hits@1与Hits@10指标上,与翻译模型TransE相比分别提升了25.9个百分点和22.0个百分点,与图神经网络模型KBGAT相比分别提升了1.8个百分点和3.5个百分点。可见,融合实体描述信息和三元组结构语义信息的多源信息表示方法可以获得更强的表示学习能力。  相似文献   

13.
随着时间的推移,网络会随着节点和连边的变化不断发展。针对传统网络表示学习算法不能正确处理动态网络的问题,提出一种基于随机游走的动态连续时间网络表示学习算法(DCTNE)。通过定义一个灵活的节点时序邻居概念,设计一个有偏的随机游走过程。根据时间信息,有效地探索节点的不同时序邻居并建模不同邻居的影响,学习网络表示。实验证明了DCTNE动态网络时序信息的有效性。在链接预测任务上,DCTNE的AUC值与其他算法相比最高获得了50%的增益;在节点分类任务上,DCTNE相较于其他算法在效果上有明显提升。结果表明,对网络中时间依赖关系进行建模有助于后续的网络分析任务。  相似文献   

14.
基于拓扑优化的图卷积网络(TOGCN)是一类图卷积神经网络(GCNN)模型,它通过网络中的辅助信息优化网络拓扑结构,有利于反映节点间的联系程度;然而TOGCN模型仅注重局部节点之间的关联关系,对网络潜在的全局结构信息关注不足.融合全局特征信息,有助于提高模型的性能和处理信息缺失时的鲁棒性.提出了融合全局结构信息的拓扑优...  相似文献   

15.
深度学习作为人工智能的一个研究分支发展迅速,而研究数据主要是语音、图像和视频等,这些具有规则结构的数据通常在欧氏空间中表示。然而许多学习任务需要处理的数据是从非欧氏空间中生成,这些数据特征和其关系结构可以用图来定义。图卷积神经网络通过将卷积定理应用于图,完成节点之间的信息传播与聚合,成为建模图数据一种有效的方法。尽管图卷积神经网络取得了巨大成功,但针对图任务中的节点分类问题,由于深层图结构优化的特有难点——过平滑现象,现有的多数模型都只有两三层的浅层模型架构。在理论上,图卷积神经网络的深层结构可以获得更多节点表征信息,因此针对其层级信息进行研究,将层级结构算法迁移到图数据分析的核心在于图层级卷积算子构建和图层级间信息融合。本文对图网络层级信息挖掘算法进行综述,介绍图神经网络的发展背景、存在问题以及图卷积神经网络层级结构算法的发展,根据不同图卷积层级信息处理将现有算法分为正则化方法和架构调整方法。正则化方法通过重新构建图卷积算子更好地聚合邻域信息,而架构调整方法则融合层级信息丰富节点表征。图卷积神经网络层级特性实验表明,图结构中存在层级特性节点,现有图层级信息挖掘算法仍未对层级特性节点的图信息进行完全探索。最后,总结了图卷积神经网络层级信息挖掘模型的主要应用领域,并从计算效率、大规模数据、动态图和应用场景等方面提出进一步研究的方向。  相似文献   

16.
Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling and dynamic graph Laplacian layout. We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.  相似文献   

17.
陈浩杰  范江亭  刘勇 《计算机应用》2022,42(4):1194-1200
针对未设计启发式算法的组合优化问题设计统一的解决方案已成为机器学习领域的一个研究热点,目前成熟的技术主要针对静态的组合优化问题,但是对于加入动态变化的组合优化问题还没有得到充分的解决。为了解决以上问题,提出一个将多头注意力机制与分层强化学习结合来求解动态图上的旅行商问题的轻量级模型Dy4TSP。首先,用以多头注意力机制为基础的预测网络处理来自图卷积神经网络的节点表征向量输入;然后,借助分布式强化学习算法训练来快速地预估图中每个节点被输出作为最优解的可能性,使得模型在不同的可能性中全面探索问题的最优解决方案空间;最后,训练后的模型将实时地生成满足具体目标奖励函数的动作决策序列。该模型在3个组合优问题上进行了评估,实验结果表明,该模型在经典旅行商系列问题中解的质量比开源求解器LKH3高0.15~0.37个单位,明显优于带有边嵌入的图注意网络(EGATE)等最新的算法;并且在其他的动态旅行商问题中可以达到0.1~1.05的最优路径差距,结果也略胜一筹。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号