首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Robust stability for interval Hopfield neural networks with time delay.   总被引:15,自引:0,他引:15  
The conventional Hopfield neural network with time delay is intervalized to consider the bounded effect of deviation of network parameters and perturbations yielding a novel interval dynamic Hopfield neural network (IDHNN) model. A sufficient condition related to the existence of unique equilibrium point and its robust stability is derived.  相似文献   

2.

This paper deals with the delay-dependent asymptotic stability analysis problem for a class of fuzzy bidirectional associative memory (BAM) neural networks with time delays in the leakage term by Takagi–Sugeno (T–S) fuzzy model. The nonlinear delayed BAM neural networks are first established as a modified T–S fuzzy model in which the consequent parts are composed of a set of BAM neural networks with time-varying delays. The parameter uncertainties are assumed to be norm bounded. Some new delay-dependent stability conditions are derived in terms of linear matrix inequality by constructing a new Lyapunov–Krasovskii functional and introducing some free-weighting matrices. Even there is no leakage delay, the obtained results are also less restrictive than some recent works. It can be applied to BAM neural networks with activation functions without assuming their boundedness, monotonicity, or differentiability. Numerical examples are given to demonstrate the effectiveness of the proposed methods.

  相似文献   

3.
This paper deals with the delay-dependent asymptotic stability analysis problem for a class of fuzzy bidirectional associative memory (BAM) neural networks with time-varying interval delays and Markovian jumping parameters by Takagi–Sugeno (T–S) fuzzy model. The nonlinear delayed BAM neural networks are first established as a modified T–S fuzzy model in which the consequent parts are composed of a set of Markovian jumping BAM neural networks with time-varying interval delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogeneous Markov process, which are governed by a Markov process with discrete and finite-state space. The new type of Markovian jumping matrices Pk and Qk are introduced in this paper. The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. A new delay-dependent stability condition is derived in terms of linear matrix inequality by constructing a new Lyapunov–Krasovskii functional and introducing some free-weighting matrices. Numerical examples are given to demonstrate the effectiveness of the proposed methods.  相似文献   

4.
In this paper, a class of interval bidirectional associative memory (BAM) neural networks with mixed delays under uncertainty are introduced and studied, which include many well-known neural networks as special cases. The mixed delays mean the simultaneous presence of both the discrete delay, and the distributive delay. Furthermore, the parameter of matrix is taken values in a interval and controlled by a unknown, but bounded function. By using a suitable Lyapunov–Krasovskii function with the linear matrix inequality (LMI) technique, we obtain a sufficient condition to ensure the global robust exponential stability for the interval BAM neural networks with mixed delays under uncertainty, which is more generalized and less conservative, restrictive than previous results. In the last section, the validity of our stability result is demonstrated by a numerical example.  相似文献   

5.
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.  相似文献   

6.
Stability analysis for neural dynamics with time-varying delays   总被引:8,自引:0,他引:8  
By using the usual additive neural-network model, a delay-independent stability criterion for neural dynamics with perturbations of time-varying delays is derived. We extend previously known results obtained by Gopalsamy and He (1994) to the time varying delay case, and present decay estimates of solutions of neural networks. The asymptotic stability is global in the state space of neuronal activations. From the techniques used in this paper, it is shown that our criterion ensures stability of neural dynamics even when the delay functions vary violently with time. Our approach provides an effective method for the stability analysis of neural dynamics with delays.  相似文献   

7.
Liang  Hao  Yingbo   《Neurocomputing》2009,72(13-15):3245
In this paper, the exponential stability is investigated for a class of time-delay BAM neural networks (NNs). Time delays of two layers are taken into account separately rather than as a whole with the idea of delay fractioning. Then we generalize the result to time-varying interval delay condition. Exploiting the known constant part of delay sufficiently to estimate the upper bounds, we can derive an improved stability for BAM NNs with time-varying interval delay. Two examples are provided to demonstrate the less conservatism and effectiveness of the proposed linear matrix inequality (LMI) conditions.  相似文献   

8.
不确定时滞BAM神经网络的鲁棒稳定性   总被引:2,自引:1,他引:1       下载免费PDF全文
利用自由权值矩阵和不等式分析技巧,研究了一类不确定时滞BAM神经网络的鲁棒稳定性问题。通过构造适当的Lyapunov泛函,对于所有允许的不确定性,以线性矩阵不等式形式给出了时滞BAM神经网络的全局鲁棒稳定性判据,该判据能够利用Matlab的LMI工具箱很容易地进行检验。此外,仿真示例进一步证明了判据的有效性。  相似文献   

9.
刘妹琴 《自动化学报》2005,31(5):750-758
提出一种新的神经网络模型---时滞标准神经网络模型(DSNNM),它由线性动力学系统和有界静态时滞非线性算子连接而成.利用不同的Lyapunov泛函和S方法推导出DSNNM全局渐近稳定性和全局指数稳定性的充分条件,这些条件可表示为线性不等式(LMI)形式.大多数时滞(或非时滞)动态神经网络(DANN)稳定性分析或神经网络控制系统都可以转化为DSNNM,以便用统一的方法进行稳定性分析或镇定控制.从DSNNM应用于时滞联想记忆(BAM)神经网络的稳定性分析以及PH中和过程神经控制器的综合实例,可以看出,得到的稳定性判据扩展并改进了以往文献中的稳定性定理,而且可将稳定性分析推广到非线性控制系统的综合.  相似文献   

10.
In this paper, the global robust stability is investigated for interval neural networks with multiple time-varying delays. The neural network contains time-invariant uncertain parameters whose values are unknown but bounded in given compact sets. Without assuming both the boundedness on the activation functions and the differentiability on the time-varying delays, a new sufficient condition is presented to ensure the existence, uniqueness, and global robust stability of equilibria for interval neural networks with multiple time-varying delays based on the Lyapunov–Razumikhin technique as well as matrix inequality analysis. Several previous results are improved and generalized, and an example is given to show the effectiveness of the obtained results.  相似文献   

11.
This article investigates the robust stability of linear neutral systems with time-varying delay and nonlinear perturbations. Using a new Lyapunov–Krasovskii functional and employing some free weighting matrices, less conservative delay-dependent robust stability conditions for such systems in terms of linear matrix inequalities are derived. Numerical examples are given to indicate significant improvements over some existing results.  相似文献   

12.
This paper concerns the globally exponential stability in Lagrange sense for Takagi-Sugeno (T-S) fuzzy Cohen-Grossberg BAM neural networks with time-varying delays. Based on the Lyapunov functional method and inequality techniques, two different types of activation functions which include both Lipschitz function and general activation functions are analyzed. Several sufficient conditions in linear matrix inequality form are derived to guarantee the Lagrange exponential stability of Cohen-Grossberg BAM neural networks with time-varying delays which are represented by T-S fuzzy models. Finally, simulation results demonstrate the effectiveness of the theoretical results.  相似文献   

13.
The problem of delay-dependent robust stability for systems with time-varying delay has been considered. By using the S-procedure and the Park's inequality in the recent issue, a delay-dependent robust stability criterion which is less conservative than the previous results has been derived for time-delay systems with time-varying structured uncertainties. The same idea has also been easily extended to the systems with nonlinear perturbations. Numerical examples illustrated the effectiveness and the improvement of the proposed approach.  相似文献   

14.
This paper deals with a class of memristor-based bidirectional associative memory (BAM) neural networks with leakage delays and time-varying delays. With the aid of the framework of Filippov solutions, Chain rule and some inequality techniques, a sufficient condition which ensures the boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks with leakage delays and time-varying delays is established. Applying a new approach involving Yoshizawa-like theorem, we prove the existence of periodic solution of the memristor-based BAM neural networks. By using the theory of set-valued maps and functional differential inclusions, Lyapunov functional, a set of sufficient conditions which guarantee the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks are derived. An example is given to illustrate the applicability and effectiveness of the theoretical predictions. The results obtained in this paper are completely new and complement the previously known studies of Li et al. [Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays, Neural networks 75 (2016) 97-109.]  相似文献   

15.
In this article, the global exponential robust stability is investigated for Cohen–Grossberg neural network with both time-varying and distributed delays. The parameter uncertainties are assumed to be time-invariant and bounded, and belong to given compact sets. Applying the idea of vector Lyapunov function, M-matrix theory and analysis techniques, several sufficient conditions are obtained to ensure the existence, uniqueness, and global exponential robust stability of the equilibrium point for the neural network. The methodology developed in this article is shown to be simple and effective for the exponential robust stability analysis of neural networks with time-varying delays and distributed delays. The results obtained in this article extend and improve a few recently known results and remove some restrictions on the neural networks. Three examples are given to show the usefulness of the obtained results that are less restrictive than recently known criteria.   相似文献   

16.
A robust feedback integrated with iterative learning control (FILC) scheme for batch processes with uncertain perturbations and interval time-varying delay is developed. The batch process is modeled as a two-dimensional (2D) Rosser system with a delay varying in a range. The design of FILC scheme is transformed into a robust control problem of uncertain 2D system. New delay-range-dependent stability criteria and stabilization conditions are derived in terms of linear matrix inequalities (LMIs), which depend on not only the difference between the upper and lower delay bounds but also the upper delay bound of the interval time-varying delay. Parameterized characterizations for stabilizing the controller are given in terms of the feasibility solutions to the LMIs. Applications to injection velocity control show that the proposed FILC achieve the design objectives well.  相似文献   

17.
This paper deals with the problems of the global exponential stability and stabilization for a class of uncertain discrete-time stochastic neural networks with interval time-varying delay. By using the linear matrix inequality method and the free-weighting matrix technique, we construct a new Lyapunov–Krasovskii functional and establish new sufficient conditions to guarantee that the uncertain discrete-time stochastic neural networks with interval time-varying delay are globally exponential stable in the mean square. Furthermore, we extend our consideration to the stabilization problem for a class of discrete-time stochastic neural networks. Based on the state feedback control law, some novel delay-dependent criteria of the robust exponential stabilization for a class of discrete-time stochastic neural networks with interval time-varying delay are established. The controller gains are designed to ensure the global robust exponential stability of the closed-loop systems. Finally, numerical examples illustrate the effectiveness of the theoretical results we have obtained.  相似文献   

18.
This paper concerns the stability analysis for singular systems with time-varying delay and nonlinear perturbations. Two cases of time-varying delay, which is differentiable (Case 1) or not differentiable (Case 2), are considered. The considered nonlinear perturbations includes the norm-bounded uncertainties as a special case. Some delay-dependent stability criteria are derived by using a delay decomposition approach. In the delay decomposition approach, the entire delay interval is divided into multiple sub-intervals for which different energy functions are defined for building new Lyapunov–Krasovskii functional. Some numerical and practical examples are given to show the effectiveness and significant improvement of the proposed method.  相似文献   

19.
ABSTRACT

In this paper, we study the robust H performance for discrete-time T-S fuzzy switched memristive stochastic neural networks with mixed time-varying delays and switching signal design. The neural network under consideration is subject to time-varying and norm bounded parameter uncertainties. Decomposing of the delay interval approach is employed in both the discrete delays and distributed delays. By constructing a proper Lyapunov-Krasovskii functional (LKF) with triple summation terms and using an improved summation inequality techniques. Sufficient conditions are derived in terms of linear matrix inequalities (LMIs) to guarantee the considered discrete-time neural networks to be exponentially stable. Finally, numerical examples with simulation results are given to illustrate the effectiveness of the developed theoretical results.  相似文献   

20.
This paper is concerned with the problem of asymptotic stability of neutral type Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. By constructing a suitable Lyapunov–Krasovskii functional (LKF), reciprocal convex technique and Jensen’s inequality are used to delay-dependent conditions are established to analysis the asymptotic stability of Cohen–Grossberg BAM neural networks with discrete and distributed time-varying delays. These stability conditions are formulated as linear matrix inequalities (LMIs) which can be easily solved by various convex optimization algorithms. Finally numerical examples are given to illustrate the usefulness of our proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号