首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 999 毫秒

1.  聚类分析中相似性测量方法的研究  
   易华容《株洲工学院学报》,2002年第2期
   聚类是数据挖掘中的主要方法.讨论了在大多数聚类算法中的相似性测量方法,并以属性的类型作为选择相似性的标准,阐述了用于数值属性,符号属性及混合属性相似性测量方法.    

2.  缺陷数据的相似性度量方法改进  
   万琳  杨腾翔  刘海宁《计算机系统应用》,2017年第26卷第8期
   模糊聚类分析主要研究样本的分类问题.本文利用模糊聚类方法对软件缺陷进行分类,引入缺陷数据属性权重计算方法,依据数据挖掘中的属性邻近性度量方法,对缺陷数据进行相似度分析.并按照属性类别进行分析,不仅体现了缺陷数据属性间的形贴近程度,而且体现了属性之间的距离贴近程度.本文方法对软件缺陷数据进行分析并对比度量结果,实验结果充分说明改进后的模糊聚类相似性度量方法在分类准确性方面有一定程度的提高.    

3.  自组织神经网络在模糊聚类中的应用研究  
   刘建英  徐爱萍《计算机技术与发展》,2005年第15卷第12期
   聚类是按照事物的某些属性,把事物分类,使类间的相似性尽量小,类内的相似性尽量大.将事物通过适当聚类,才能便于研究事物的内部规律,但客观世界中存在着大量界线不分明的问题,研究模糊聚类的方法正是为了解决这类问题.在对常规模糊聚类方法分析的基础上,提出了一种将自组织竞争神经网络技术运用于模糊聚类的一种方法,并以100种动物分类为例,进行了模拟试验,仿真结果证明这种方法进行模糊聚类的思想正确,方法可行,效果较好.    

4.  自组织神经网络在模糊聚类中的应用研究  被引次数:5
   刘建英 徐爱萍《微机发展》,2005年第15卷第12期
   聚类是按照事物的某些属性,把事物分类,使类间的相似性尽量小,类内的相似性尽量大。将事物通过适当聚类,才能便于研究事物的内部规律,但客观世界中存在着大量界线不分明的问题,研究模糊聚类的方法正是为了解决这类问题。在对常规模糊聚类方法分析的基础上,提出了一种将自组织竞争神经网络技术运用于模糊聚类的一种方法,并以100种动物分类为例,进行了模拟试验,仿真结果证明这种方法进行模糊聚类的思想正确,方法可行,效果较好。    

5.  基于数据挖掘的入侵检测系统设计和实现  
   冯春辉  冯连勋《微计算机信息》,2008年第24卷第33期
   随着网络入侵技术的不断发展,入侵的行为表现出不确定性、复杂性、多样性等特点,入侵检测面临许多有待解决的关键问题.本文详细介绍了基于数据挖掘的入侵检测系统的设计和具体实现,也就是用于数据预处理和分类、聚类挖掘的数据挖掘技术.在数据预处理中,我们使用基于属性抽取的方法去除干扰属性.最后,我们对系统进行了测试,通过测试结果我们发现挖掘的效率和正确率,而系统确实能够有效的检测到已知未知攻击.    

6.  两层聚类的类别不平衡数据挖掘算法  
   胡小生  张润晶  钟勇《计算机科学》,2013年第40卷第11期
   类别不平衡数据分类是机器学习和数据挖掘研究的热点问题。传统分类算法有很大的偏向性,少数类分类效果不够理想。提出一种两层聚类的类别不平衡数据级联挖掘算法。算法首先进行基于聚类的欠采样,在多数类样本上进行聚类,之后提取聚类质心,获得与少数类样本数目相一致的聚类质心,再与所有少数类样例一起组成新的平衡训练集,为了避免少数类样本数量过少而使训练集过小导致分类精度下降的问题,使用SMOTE过采样结合聚类欠采样;然后在平衡的训练集上使用K均值聚类与C4.5决策树算法相级联的分类方法,通过K均值聚类将训练样例划分为K个簇,在每个聚类簇内使用C4.5算法构建决策树,通过K个聚簇上的决策树来改进优化分类决策边界。实验结果表明,该算法具有处理类别不平衡数据分类问题的优势。    

7.  调和聚类-分类方法在电力负荷预测中的应用  
   窦全胜  史忠植  姜平  马君华《计算机学报》,2012年第35卷第12期
   分类和聚类是数据挖掘中两个重要的研究领域,分类需要相关的先验知识,而聚类往往依据某种相似性测度,从数据本身来寻找其内在特征.在电力系统负荷预测过程中,依靠先验知识得到的分类结果与聚类结果之间并不协调.针对这一问题,文中给出了调和矩阵的定义,并在此基础上,提出调和聚类-分类算法,将该方法应用于电力系统负荷预测的样本分类中,实际结果表明,通过文中方法得到的分类结果更加客观和科学,预测结果的可靠性得到了保证.    

8.  基于模糊工具箱和ROSETTA的粗糙集数据挖掘  
   徐袭  刘玉波  范学鑫《微计算机信息》,2007年第23卷第18期
   针对大量连续属性值的数据挖掘,提出了一种基于模糊工具箱和ROSETTA软件的粗糙集数据挖掘方法.在粗糙集理论的基础上,应用模糊工具箱中的模糊聚类方法离散分类连续属性值,并将其转化为粗糙集易于处理的知识表格.应用粗糙集数据挖掘软件ROSETTA对这些知识表格进行知识约简处理.通过约简知识属性和属性值,得到连续属性值的核心知识规则,并以实测数据为例,说明了该方法的实现过程和有效性.    

9.  基于数据块的多变量时间序列相似性度量  
   翟彦青  丁立新  周考《计算机应用研究》,2016年第33卷第9期
   时间序列数据挖掘是数据挖掘领域的热点之一。相似性度量是时序挖掘领域的基础问题,直接决定了时序数据分类和聚类的效果。针对现有经典的时序数据相似性度量方法共同主成分分析(CPCA)和二维奇异值分解(2DSVD)中存在无法保存时序数据集合中蕴含的某些重要局部特征的问题,提出了基于数据分块方式的CPCA方法和2DSVD方法。该算法首先对原始多变量时间序列数据进行分块处理,然后对分块得到的子矩阵采用CPCA、2DSVD进行特征提取,从而得到代替原始模式的低维新模式,最后在低维空间中利用最小距离法构建分类器对多变量时间序列进行分类。EEG数据分类实验证明了所提方法的有效性。    

10.  融合粗糙集和模糊聚类的连续数据知识发现  被引次数:55
   于达仁  胡清华  鲍文《中国电机工程学报》,2004年第24卷第6期
   知识自动获取是困扰基于知识的系统普遍推广应用的瓶颈,粗糙集理论是一种从历史数据中发现规则知识的数学工具。该文针对粗糙集方法应用于电厂与电力系统数据挖掘中存在的连续属性离散化问题,提出了基于模糊聚类的离散化方法。采用模糊C平均(FCM)算法离散连续属性,获得各类的聚类中心以及属性值隶属于各聚类中心的隶属度矩阵,得到离散化的数据。将粗糙集方法应用于离散化后的数据挖掘隐含在历史数据中的知识。最后进一步讨论了置信度、支持度等指标对规则的评价方法。给出的汽轮机轴系振动故障诊断规则获取算例验证了整个知识发现方案的可行性。    

11.  聚类在股票研究中的应用  
   张迎春  陈洁  张晨希  万忠  张燕平《微机发展》,2006年第16卷第4期
   聚类是按照事物的某些属性,把其聚集成类,使各类间的相似性尽量小,类内相似性尽量大。现在使用的一些聚类算法大多效率不高、聚类速度慢。文中在改进LBG算法的基础上提出了一种新的聚类算法,克服了传统的LBG算法的缺点,具有准确性高、测试时间短的优点。现将它应用于股票数据的预测分析中,实验结果表明这种新的聚类算法,相较于其它聚类算法能够取得更好的结果。    

12.  聚类在股票研究中的应用  被引次数:1
   张迎春  陈洁  张晨希  万忠  张燕平《计算机技术与发展》,2006年第16卷第4期
   聚类是按照事物的某些属性,把其聚集成类,使各类问的相似性尽量小,类内相似性尽量大。现在使用的一些聚类算法大多效率不高、聚类速度慢。文中在改进LBG算法的基础上提出了一种新的聚类算法,克服了传统的LBG算法的缺点,具有准确性高、测试时间短的优点。现将它应用于股票数据的预测分析中,实验结果表明这种新的聚类算法,相较于其它聚类算法能够取得更好的结果。    

13.  基于分类敏感属性语义距离的隐私保护模型*  
   孙艳正  陈伟鹤  詹永照《计算机应用研究》,2011年第28卷第10期
   针对传统的k-匿名模型不能有效地解决数据发布中分类敏感属性的相似性攻击问题,提出了新的隐私保护模型——α-similarity k-anonymity模型。由于分类属性值并不是严格意义上有序的,目前缺少一种很好的方法来评价其相似程度。从语义学角度出发,采用分类树的框架来衡量等价类中敏感属性值的语义相似性。实验结果表明,该模型不仅能有效解决身份泄露问题,还能有效解决相似性攻击问题,提供更好的隐私保护效果。    

14.  近似k-median分类属性数据聚类  
   赵恒  张高煜《计算机工程》,2007年第33卷第8期
   数据挖掘中解决分类属性数据聚类的算法有很多种,但大多数基于划分的方法得到的聚类中心一般不是数据集中的实际数据对象,缺乏实际的物理意义,有时会导致某一聚类为空。该文研究了近似k-median的求解算法,用数据的近似中值来代替模式进行聚类,提出了分类属性数据的近似k-median聚类算法,克服了一般基于划分的可分类属性数据聚类中所遇到的问题,仿真实验证明该算法有效。    

15.  异构属性数据的量子聚类方法研究  被引次数:1
   李志华  王士同《计算机工程与应用》,2009年第45卷第23期
   研究了异构属性数据的聚类问题。通过挖掘样本中的结构信息,用加权的Mahalanobis距离来度量异构样本的相异性;根据分类属性数据的分布与粒子在量子势能场中的分布不平衡的相似性,重写量子势能公式为距离量子势能的形式,提出了一种新的异构属性数据量子聚类WMDQC算法。通过进一步集成该算法和AHC算法为WMDQCM聚类方法,用AHC算法更高效地挖掘样本中有利于聚类的结构线索。实验结果表明,方法具有比较优势,显著地改善了聚类性能,具有一定的实用价值。    

16.  基于改进粗糙逼近近似度量的数据挖掘方法  被引次数:1
   张文宇《计算机工程与应用》,2005年第41卷第23期
   数据挖掘是知识发现领域的一个重要问题,粗糙集理论是一种具有模糊边界的数据挖掘方法,它被广泛应用于决策系统的分类规则提取中。论文在决策表条件属性重要性度量的基础上,根据条件属性对决策类划分的逼近近似度量,提出了基于改进粗糙逼近近似度量的数据挖掘进行属性约减方法,并用算例验证了算法的合理性和可行性。    

17.  基于模糊粗糙集与改进聚类的神经网络风速预测  被引次数:3
   刘兴杰  岑添云  郑文书  米增强《中国电机工程学报》,2014年第19期
   提高风电功率预测精度是保障风电场和电力系统安全稳定运行的有效手段。神经网络方法已在风电功率预测中得到了广泛应用,并取得了不错的效果,而网络的输入变量与训练样本对其预测性能有着重要影响。基于此,提出一种基于模糊粗糙集与改进聚类的神经网络风速预测方法。采用模糊粗糙集对影响风电场风速的多种因素进行了属性约简,得到优化了的模型输入及各属性对风速的重要性;采用基于属性重要性的加权欧氏距离对传统聚类进行改进,建立了各聚类预测模型,并提取相似性较高的数据作为训练样本训练各类预测模型,对训练样本实现了优选;根据当前属性值选择匹配的模型对风速进行预测。以华北地区某风电场实际数据为例进行了实验,结果表明该方法能在较少的模型输入下有效地提高预测精度。    

18.  基于属性权重的Fuzzy C Mean算法  被引次数:14
   王丽娟  关守义  王晓龙  王熙照《计算机学报》,2006年第29卷第10期
   提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(ω),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(ω)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论.    

19.  用于数据挖掘的聚类算法  被引次数:25
   姜园  张朝阳  仇佩亮  周东方《电子与信息学报》,2005年第27卷第4期
   数据挖掘用于从超大规模数据库中提取感兴趣的信息。聚类是数据挖掘的重要工具,根据数据间的相似性 将数据库分成多个类,每类中数据应尽可能相似。从机器学习的观点来看,类相当于隐藏模式,寻找类是无监督学 习过程。目前已有应用于统计、模式识别、机器学习等不同领域的几十种聚类算法。该文对数据挖掘中的聚类算法 进行了归纳和分类,总结了7类算法并分析了其性能特点。    

20.  高维分类属性的子空间聚类算法  被引次数:2
   单世民  王新艳  张宪超《小型微型计算机系统》,2009年第30卷第10期
   高维分类数据的处理一直是数据挖掘研究所面临的巨大挑战.传统聚类算法主要针对低雏连续性数据的聚类,难以处理高维分类属性数据集.本文提出一种处理高维分类数据集的子空间聚类算法(FP-Tree-based SUBspace clustering algorithm,FPSUB),利用频繁模式树将聚类问题转化为寻找属性值的频繁模式发现问题,得到的频繁模式即候选子空间,然后基于这些子空间进行聚类.针对真实数据集的实验结果表明,FPSUB算法比其他算法具有更高的准确度.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号