首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
In recent years, time series forecasting studies in which fuzzy time series approach is utilized have got more attentions. Various soft computing techniques such as fuzzy clustering, artificial neural networks and genetic algorithms have been used in fuzzy time series method to improve the method. While fuzzy clustering and genetic algorithms are being used for fuzzification, artificial neural networks method is being preferred for using in defining fuzzy relationships. In this study, a hybrid fuzzy time series approach is proposed to reach more accurate forecasts. In the proposed hybrid approach, fuzzy c-means clustering method and artificial neural networks are employed for fuzzification and defining fuzzy relationships, respectively. The enrollment data of University of Alabama is forecasted by using both the proposed method and the other fuzzy time series approaches. As a result of comparison, it is seen that the most accurate forecasts are obtained when the proposed hybrid fuzzy time series approach is used.  相似文献   

2.
Determination of fuzzy logic relationships between observations is quite effective on the forecasting performance of fuzzy time series approaches. In various studies available in the literature, it has been seen that utilizing artificial neural networks for establishing fuzzy relations increase the forecasting accuracy. In this study, a novel high order fuzzy time series forecasting approach in which multiplicative neuron model is used to define fuzzy relations is proposed in order to reach high forecasting level. Also, particle swarm optimization method is utilized to train multiplicative neuron model. In order to show forecasting performance of the proposed method, it is applied to a well-known data Taiwan future exchange and the results produced by the proposed approach is compared to those obtained from other fuzzy time series forecasting models. As a result of the implementation, it is observed that the proposed approach gives the best forecasts for Taiwan future exchange time series.  相似文献   

3.
Many fuzzy time series approaches have been proposed in recent years. These methods include three main phases such as fuzzification, defining fuzzy relationships and, defuzzification. Aladag et al. [2] improved the forecasting accuracy by utilizing feed forward neural networks to determine fuzzy relationships in high order fuzzy time series. Another study for increasing forecasting accuracy was made by Cheng et al. [6]. In their study, they employ adaptive expectation model to adopt forecasts obtained from first order fuzzy time series forecasting model. In this study, we propose a novel high order fuzzy time series method in order to obtain more accurate forecasts. In the proposed method, fuzzy relationships are defined by feed forward neural networks and adaptive expectation model is used for adjusting forecasted values. Unlike the papers of Cheng et al. [6] and Liu et al. [14], forecast adjusting is done by using constraint optimization for weighted parameter. The proposed method is applied to the enrollments of the University of Alabama and the obtained forecasting results compared to those obtained from other approaches are available in the literature. As a result of comparison, it is clearly seen that the proposed method significantly increases the forecasting accuracy.  相似文献   

4.
In recent years, artificial neural networks (ANNs) have been commonly used for time series forecasting by researchers from various fields. There are some types of ANNs and feed forward neural networks model is one of them. This type has been used to forecast various types of time series in many implementations. In this study, a novel multiplicative seasonal ANN model is proposed to improve forecasting accuracy when time series with both trend and seasonal patterns is forecasted. This neural networks model suggested in this study is the first model proposed in the literature to model time series which contain both trend and seasonal variations. In the proposed approach, the defined neural network model is trained by particle swarm optimization. In the training process, local minimum traps are avoided by using this population based heuristic optimization method. The performance of the proposed approach is examined by using two real seasonal time series. The forecasts obtained from the proposed method are compared to those obtained from other forecasting techniques available in the literature. It is seen that the proposed forecasting model provides high forecasting accuracy.  相似文献   

5.
Accurate time series forecasting is a key issue to support individual and organizational decision making. In this paper, we introduce novel methods for multi-step seasonal time series forecasting. All the presented methods stem from computational intelligence techniques: evolutionary artificial neural networks, support vector machines and genuine linguistic fuzzy rules. Performance of the suggested methods is experimentally justified on seasonal time series from distinct domains on three forecasting horizons. The most important contribution is the introduction of a new hybrid combination using linguistic fuzzy rules and the other computational intelligence methods. This hybrid combination presents competitive forecasts, when compared with the popular ARIMA method. Moreover, such hybrid model is more easy to interpret by decision-makers when modeling trended series.  相似文献   

6.
Fuzzy time series methods have been recently becoming very popular in forecasting. These methods can be categorized into two subclasses that are univariate and multivariate approaches. It is a known fact that real time series data can actually be affected by many factors. In this case, the using multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. To obtain fuzzy forecasts when multivariate fuzzy time series approach is adopted, the most applied method is using tables of fuzzy relations. However, employing this method is a computationally though task. In this study, we introduce a new method that does not require using fuzzy logic relation tables in order to determine fuzzy relationships. Instead, a feed forward artificial neural network is employed to determine fuzzy relationships. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. Expert Systems with Applications, 35, 691–700] and Lee et al. [Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468–477].  相似文献   

7.
《Applied Soft Computing》2007,7(2):585-592
The need for increased accuracies in time series forecasting has motivated the researchers to develop innovative models. In this paper, a new hybrid time series neural network model is proposed that is capable of exploiting the strengths of traditional time series approaches and artificial neural networks (ANNs). The proposed approach consists of an overall modelling framework, which is a combination of the conventional and ANN techniques. The steps involved in the time series analysis, e.g. de-trending and de-seasonalisation, can be carried out before gradually presenting the modified time series data to the ANN. The proposed hybrid approach for time series forecasting is tested using the monthly streamflow data at Colorado River at Lees Ferry, USA. Specifically, results from four time series models of auto-regressive (AR) type and four ANN models are presented. The results obtained in this study suggest that the approach of combining the strengths of the conventional and ANN techniques provides a robust modelling framework capable of capturing the non-linear nature of the complex time series and thus producing more accurate forecasts. Although the proposed hybrid neural network models are applied in hydrology in this study, they have tremendous scope for application in a wide range of areas for achieving increased accuracies in time series forecasting.  相似文献   

8.
Time series forecasting is a challenging task in machine learning. Real world time series are often composed by linear and nonlinear structures which need to be mapped by some forecasting method. Linear methods such as autoregressive integrated moving average (ARIMA) and nonlinear methods such as artificial neural networks (ANNs) could be employed to handle such problems, however model misspecification hinders the forecasting process producing inaccurate models. Hybrid models based on error forecasting and combination can reduce the misspecification of single models and improve the accuracy of the system. This work proposes a hybrid system that is composed of three parts: a) linear modeling of the time series, b) nonlinear modeling of the error series, and c) combination of the forecasts using three distinct approaches. The system performs a search for the best parameters of the linear and nonlinear components, and of the combination approaches. Particle swarm optimization is used to find suitable architecture and weights. Experiments show that the proposed technique achieved promising results in time series forecasting.  相似文献   

9.
Modeling and forecasting of time series data are integral parts of many scientific and engineering applications. Increasing precision of the performed forecasts is highly desirable but a difficult task, facing a number of mathematical as well as decision-making challenges. This paper presents a novel approach for linearly combining multiple models in order to improve time series forecasting accuracy. Our approach is based on the assumption that each future observation of a time series is a linear combination of the arithmetic mean and median of the forecasts from all participated models together with a random noise. The proposed ensemble is constructed with five different forecasting models and is tested on six real-world time series. Obtained results demonstrate that the forecasting accuracies are significantly improved through our combination mechanism. A nonparametric statistical analysis is also carried out to show the superior forecasting performances of the proposed ensemble scheme over the individual models as well as a number of other forecast combination techniques.  相似文献   

10.
Fuzzy time series models have been applied to forecast various domain problems and have been shown to forecast better than other models. Neural networks have been very popular in modeling nonlinear data. In addition, the bivariate models are believed to outperform the univariate models. Hence, this study intends to apply neural networks to fuzzy time series forecasting and to propose bivariate models in order to improve forecasting. The stock index and its corresponding index futures are taken as the inputs to forecast the stock index for the next day. Both in-sample estimation and out-of-sample forecasting are conducted. The proposed models are then compared with univariate models as well as other bivariate models. The empirical results show that one of the proposed models outperforms the many other models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号