首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 296 毫秒
1.
左心室射血分数是临床上用于衡量心脏健康的一项重要指标.为提高左心室分割和射血分数计算的精度,提出一种基于改进的全卷积神经网络和全连接条件随机场的方法.首先利用预训练的全卷积神经网络模型对心脏核磁共振影像进行左心室分割并输出概率图;之后采用3D全连接条件随机场对概率图进行后处理,完成像素级的精准密度预测;最后对左心室分割结果进行3D重建,并计算左心室舒张末期容积和收缩末期容积,进而计算出射血分数.实验结果表明,该方法能够实现左心室射血分数的精确且高效的计算,对左心室射血分数的平均预测误差为4.67%,各步骤耗时短.  相似文献   

2.
一种心脏核磁共振图像左室壁内、外膜分割方法   总被引:1,自引:0,他引:1  
王元全  贾云得 《软件学报》2009,20(5):1176-1184
为了充分利用心脏核磁共振图像(magnetic resonance image,简称MRI)中关于左心室的解剖和功能信息,必须先分割左室壁内、外膜.提出一种基于Snake模型的左室壁内、外膜分割方法.首先提出了Snake模型的卷积虚拟静电场外力模型CONVEF(convolutional virtual electric field),该外力场捕捉范围大、抗噪能力强、在C形凹陷区域等问题上性能突出,而且基于卷积运算,采用快速Fourier变换可以实时计算.就左室壁内膜的分割而言,考虑到左室壁的形状近似为圆形,引入基于圆形约束的能量项.对于左室壁外膜的分割,充分挖掘了左室壁内、外膜形状上的相似性和位置上的相关性,构造了形状相似性内能和一个新的边缘图,该边缘图用来计算新的外力场.基于所有这些策略并采用内膜的分割结果初始化,可以自动、准确地分割外膜.通过对一套活体心脏MR(magnetic resonance)图像进行分割并和手工分割结果和GGVF(generalized gradient vector flow) Snake模型的分割结果进行比较,结果表明该方法是有效的.  相似文献   

3.
基于距离正则水平集模型(DRLSE)的左心室MR图像分割算法对梯度信息有很强的依赖性,在图像弱边缘区域容易陷入局部最优,且对初始轮廓的选取敏感。为降低算法对初始轮廓的敏感程度,提高其在左心室图像弱边缘的分割能力,提出一种适用于弱边缘信息的左心室分割算法。在DRLSE的基础上,该分割算法提出运用拟合方法计算基于变异系数分割模型(PSM)的新局部项,算法依靠梯度与图像局部信息驱动曲线演化,降低了DRLSE对初始轮廓的敏感度;引入形状约束力,克服DRLSE算法在左心室外膜弱边界处出现边界泄露的情况。为验证所提算法分割的准确性,基于多伦多市患病儿童医院影像科提供的数据库,利用DRLSE、保持凸性水平集模型(CPLSE)模型、U-Net网络以及提出的内膜算法对心内膜进行分割;利用DRLSE、引入外膜形状约束力的DRLSE模型(DRLSE-shape)、U-Net网络以及提出的外膜算法对心外膜进行分割。实验结果表明,针对左心室内、外膜,所提算法优于上述算法,能降低DRLSE对初始轮廓的敏感程度,提升对左心室弱边界MR图像分割的精确度。  相似文献   

4.
徐伟  王建  杨新 《计算机工程》2013,(11):19-23,30
在心肌灌注核磁共振(MR)图像中,病人的呼吸和心跳会使心脏的位置和形状发生改变,因此需要对心脏核磁共振(CMR)时间序列图像中的心肌图像位置进行运动补偿。针对医学图像特征较少的问题,利用马尔科夫随机场(MRF)模型,提出一种基于图像配准的心脏运动补偿算法。根据心动周期不同时间点图像像素块的邻域和灰度信息,计算心脏的运动向量,将最相似的像素块平移到图像的相近位置,对心跳产生的位移进行补偿。由于MRF模型的计算量较大,将CPU算法和GPU算法相结合,计算耗时部分使用GPU并行实现,以提高程序的运行速度。实验结果表明,该方法能有效地对心肌灌注MR图像中心脏的位移和弹性形变进行补偿,结合GPU算法能使运动补偿算法的计算性能提高400%,图像配准时间仅为CPU算法的1/3。  相似文献   

5.
基于GVF模型与光流场的左心室容积计算   总被引:1,自引:0,他引:1  
针对目前利用心脏核磁共振图像计算左心室容积存在的分割困难和计算量大的问题,提出了一种新的计算左心室容积的方法.首先采用基于梯度向量流的主动轮廓模型(GVF-snake)对左心室内膜进行分割获取初始轮廓线,再采用光流法跟踪得到心脏序列中后续帧图像的心腔内膜轮廓线,最后采用Simpson方法计算得到左心室容积.运用该方法得到的结果和用手工勾画心脏内膜轮廓得到的结果比较表明:GVF-snake与光流运动跟踪相结合的方法用于左心室容积的计算是可行的.  相似文献   

6.
针对卷积神经网络(CNN)在医学图像分割时,受皮肤病损图像多样性、分割目标位置、形状及尺度变化等因素影响,提出了一种基于传统卷积神经网络综合注意力模块图像分割算法。首先利用U-Net主干网络的优势,其目的让图像特征提取更完善;其次,由空间、通道、尺度构成的综合注意力机制对目标病灶区域进行检测识别,利用通道级联把来自编码器中低级图像特征和解码器中高级图像特征注意力结合起来进行权值自适应融合,提升了网络对样本病灶区的关注度和辨识力,突出强调最相关的特征通道和多尺度间最显著的特征图。通过对ISIC2018数据集及医院整形外科提供患者不同类型的皮肤肿瘤图像进行分割测试,并将注意力模块随机组合形成的不同算法进行指标评价比对,所提出算法的平均分割精度可达92.89%。实验结果表明,所提出算法是有效可行的,在多维度下分割处理带复杂背景的皮肤病灶图像时有更高的鲁棒性。  相似文献   

7.
提出了一种基于广义梯度矢量流Snake模型的心脏核磁共振图像左心室内、外膜分割方法。首先构造了一种基于目标边缘的方向广义梯度矢量流(edge-based directional generalized gradient vector flow, EDGGVF) Snake模型,该模型在传统GGVF的基础上,结合目标边缘图梯度方向信息,将左心室内、外膜区分为正边缘和负边缘,从而实现左心室内外膜的全自动分割。其次,根据左心室近似为圆形的形状特点,引入了圆形能量约束,有利于克服由于图像灰度不均、乳突肌等引起的局部极小。实验结果表明,该方法可以高效准确地自动分割出左心室内、外膜。  相似文献   

8.
由于运动原因会造成活体心脏MRI图像中左心室心内膜与心肌边缘轮廓模糊, 进而导致分割不准确以及分割精度较低, 针对这些问题, 本文提出一种基于光流场与语义特征融合的心脏4D Cine-MRI (magnetic resonance imaging)左心室心肌分割模型OSFNet. 该模型包含了光流场计算和语义分割网络: 将光流场计算得到的运动特征与图像语义特征进行融合, 通过网络学习达到了最优的分割效果. 模型采用编码器-解码器结构, 本文提出的多感受野平均池化模块用于提取多尺度语义特征, 减少了特征丢失; 解码器部分使用了多路上采样方法和跳跃连接, 保证了语义特征被有效还原. 本文使用ACDC公开数据集对模型进行训练与测试, 并分别与DenseNet和U-Net在左心室内膜分割、左心室内膜和心肌分割目标上进行对比. 实验结果表明, OSFNet在Dice和HD等多个指标上取得了最佳效果.  相似文献   

9.
MR心脏图像左心室内外壁的自动分割是计算机辅助心功能诊断的前提。本文提出了一种MR心脏图像的左心室内外壁的联合分割和时序追踪的新方法。首先用改进几何动态轮廓线算法分割一帧3维MR图像中的左心室内壁,然后通过时序追踪得到同一层面各帧的内壁轮廓。分割外壁时,以内壁为初始轮廓,设计一种由距离和区域灰度均值约束的区域膨胀力,分割心室的外壁。在临床实际心电门控动态4D心脏MRI序列图像上的实验结果表明,算法分割左心室的内外壁的结果和专家手动分割结果很接近;并且根据心室内外壁分割结果建立的左心室3维模型,可以计算出几种重要的临床心功能指标。  相似文献   

10.
结合水平集方法和形状约束Snake模型的左心室MRI图像分割   总被引:1,自引:0,他引:1  
提出结合水平集方法和形状约束Snake模型的左心室MRI图像分割算法.由于左心室存在弱边缘、与周围的组织之间存在低对比度区域,Snake模型分割左心室MRI图像时,将会出现变形曲线泄漏现象.通过对训练图像的配准、变化模式的分析,定义左心室的边界形状变化允许空间.根据心脏MRI图像的特点,使用水平集方法在平均形状周围构造形状约束能量场.在Snake模型中增加形状约束能量项后,能够有效处理变形曲线的泄漏问题.通过将演化曲线投影到形状允许空间,对其施加形状约束.心脏MRI图像的分割实验证明了模型的有效性.  相似文献   

11.
针对传统卷积神经网络在作物病害叶片图像中分割精度低的问题,提出一种基于级联卷积神经网络(Cascade Convolutional Neural Network,CCNN)的作物病害叶片图像分割方法。该网络由区域病斑检测网络和区域病斑分割网络组成。基于传统VGG16模型构建区域病斑检测网络(Regional Detection Network,RD-net),利用全局池化层代替全连接层,由此减少模型参数,实现叶片病斑区域精确定位。基于Encoder-Decoder模型结构建立区域分割网络(Regional Segmentation Network,RS-net),并利用多尺度卷积核提高原始卷积核的局部感受野,对病斑区域精确分割。在不同环境下的病害叶片图像上进行分割实验,分割精度为87.04%、召回率为78.31%、综合评价指标值为88.22%、单幅图像分割速度为0.23?s。实验结果表明该方法能够满足不同环境下的作物病害叶片图像分割需求,可为进一步的作物病害识别方法研究提供参考。  相似文献   

12.
前列腺磁共振图像分割的反卷积神经网络方法   总被引:1,自引:0,他引:1       下载免费PDF全文
目的 前列腺磁共振图像存在组织边界对比度低、有效区域少等问题,手工勾勒组织轮廓边界的传统分割方法无法满足临床实时性要求,针对这些问题提出了一种基于深度反卷积神经网络的前列腺磁共振图像分割算法。方法 基于深度学习理论,将训练图像样本输入设计好的卷积神经网络,提取具有高度区分性的前列腺图像特征,反卷积策略用于拓展特征图尺寸,使网络的输入尺寸与输出预测图大小匹配。网络生成的概率预测图通过训练一个softmax分类器,对预测图像取二值化,获得最终的分割结果。为克服原始图像中有效组织较少的问题,采用dice相似性系数作为卷积网络的损失函数。结果 本文算法以Dice相似性系数和Hausdorff距离作为评价指标,在MICCAI 2012数据集中,Dice相似性系数大于89.75%,Hausdorff距离小于1.3 mm,达到了传统方法的分割精度,并且将处理时间缩短在1 min以内,明显优于其他方法。结论 定量与定性的实验表明,基于反卷积神经网络的前列腺分割方法可以准确地对磁共振图像进行分割,相比于其他分割算法大幅度减小了处理时间,能够很好地适用于临床的前列腺图像分割任务。  相似文献   

13.
心脏的磁共振图像(Magnetic Resonance Imaging,MRI)对比度强、分辨率高、能够准确描述心脏的解剖功能,因此被认为是准确评估心脏挤压能力的金标准。在心脏的核磁共振图像上准确分割出左心室是准确评估左心室功能的前提。阐述了磁共振图像左心室分割的基本特点和难点,针对现阶段具有代表性的4种MRI左心室分割算法的基本原理、分割效果及时间效率等特点进行了归纳与总结。总结分析了MRI左心室分割领域面临的一些问题和发展方向。  相似文献   

14.
在分析心脏MR图像特点的基础上,提出了先对心脏MRI图像进行K均值聚类,把K均值聚类后的图像作为特征图像,在特征上用Song和Chan提出的快速分割方法进行粗分割,再用粗分割的曲线作为水平集的初始曲线,在心脏MRI图像上用Chan和Vese方法进行细分割的心脏MR图像分割方法.并对Song和Chan快速算法中扫描图像的区域进行了改进,提高了分割速度.分割实验证明,用该方法能够快速、准确地分割心脏MRI图像.  相似文献   

15.
小样本材料图像分割是图像分割领域的研究难点之一。材料图像的微观结构大多数形状各异、纹理复杂且边界模糊,会导致材料图像的分割不准确。Graph-UNet被提出融合U-Net和图卷积神经网络来解决小样本材料图像自动分割的挑战,它将卷积神经网络的多维特征融合和跳跃连接的思想迁移到图卷积神经网络中实现图卷积和图注意力的有效结合,并且建立了一个通用的模块实现特征图和图结构相互转换。在材料图像数据集上进行了对比和消融实验,证明了Graph-UNet的分割结果优于很多先进方法,准确地识别了多种材料结构,推动了探究材料结构和性能关系的发展。  相似文献   

16.
为促进阿尔兹海默症的诊断及治疗,实现对海马体的精确分割,针对海马体MRI图像,提出一种基于U-net模型改进的分割算法。使用CLAHE等对原始图像进行预处理,经处理后的图像有效提高了分割效果;将残差模块加入实现分割算法的卷积网络,增强网络性能,避免网络性能退化。对原始数据集进行扩充,将扩充后的样本数据用以训练网络,解决数据量的问题。实验结果表明,该算法在脑部MRI图像中对海马体实现了良好的分割效果,能较好辅助医生诊断。  相似文献   

17.
Deep neural networks (DNNs) have been extensively studied in medical image segmentation.However,existing DNNs often need to train shape models for each object to be segmented,which may yield results that violate cardiac anatomical structure when segmenting cardiac magnetic resonance imaging (MRI).In this paper,we propose a capsule-based neural network,named Seg-CapNet,to model multiple regions simultaneously within a single training process.The Seg-CapNet model consists of the encoder and the decoder.The encoder transforms the input image into feature vectors that represent objects to be segmented by convolutional layers,capsule layers,and fully-connected layers.And the decoder transforms the feature vectors into segmentation masks by up-sampling.Feature maps of each down-sampling layer in the encoder are connected to the corresponding up-sampling layers,which are conducive to the backpropagation of the model.The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture,as well as semantic features including the position and size of the objects,which is beneficial for improving the segmentation accuracy.The proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017 (ACDC 2017) and the Sunnybrook Cardiac Magnetic Resonance Imaging (MRI) segmentation challenge.Experimental results show that the mean Dice coefficient of Seg-CapNet is increased by 4.7% and the average Hausdorff distance is reduced by 22%.The proposed model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of multiple regions.  相似文献   

18.
Deep neural networks (DNNs) have been extensively studied in medical image segmentation.However,existing DNNs often need to train shape models for each object to be segmented,which may yield results that violate cardiac anatomical structure when segmenting cardiac magnetic resonance imaging (MRI).In this paper,we propose a capsule-based neural network,named Seg-CapNet,to model multiple regions simultaneously within a single training process.The Seg-CapNet model consists of the encoder and the decoder.The encoder transforms the input image into feature vectors that represent objects to be segmented by convolutional layers,capsule layers,and fully-connected layers.And the decoder transforms the feature vectors into segmentation masks by up-sampling.Feature maps of each down-sampling layer in the encoder are connected to the corresponding up-sampling layers,which are conducive to the backpropagation of the model.The output vectors of Seg-CapNet contain low-level image features such as grayscale and texture,as well as semantic features including the position and size of the objects,which is beneficial for improving the segmentation accuracy.The proposed model is validated on the open dataset of the Automated Cardiac Diagnosis Challenge 2017 (ACDC 2017) and the Sunnybrook Cardiac Magnetic Resonance Imaging (MRI) segmentation challenge.Experimental results show that the mean Dice coefficient of Seg-CapNet is increased by 4.7% and the average Hausdorff distance is reduced by 22%.The proposed model also reduces the model parameters and improves the training speed while obtaining the accurate segmentation of multiple regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号