首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
针对K-means算法中聚类结果易受初始聚类中心影响的缺点,提出一种改进初始聚类中心选择的算法.该算法不断寻找最大聚类,并利用距离最大的两个数据对象作为开始的聚类中心对该聚类进行分裂,如此反复,直到得到指定聚类中心个数.用KDD CUP99数据集对改进算法进行仿真实验,实验数据表明,用该算法获得的聚类中心进行聚类相对原始的K-means算法,能获得更好的聚类结果.  相似文献   

2.
在K-means型多视图聚类算法中,最终的聚类结果会受到初始类中心的影响。因此研究了不同的初始中心选择方法对K-means型多视图聚类算法的影响,并提出一种基于采样的主动式初始中心选择方法(sampledclustering by fast search and find of density peaks,SDPC)。该方法通过对数据集进行均匀采样,利用密度峰值快速搜索聚类算法(clustering by fast search and find of density peaks,DPC),以及K-means再迭代策略,进一步改善多视图聚类中的初始中心选择效率和类个数问题。实验验证了不同初始化方法对K-means型多视图聚类算法的影响。多视图基准数据集上的实验结果表明:全局(核)K-means初始化方法存在时间复杂度过高的问题,AFKMC~2(assumption-free K-Markov chain Monte Carlo)初始化适用于大规模数据,DPC可以主动选择类个数和初始类中心,SDPC较DPC而言,不仅能主动式获得类个数,还在聚类精度和效率上取得了较好的折衷。  相似文献   

3.
K-means算法的初始聚类中心的优化   总被引:10,自引:3,他引:7       下载免费PDF全文
传统的K-means算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,针对K-means算法存在的问题,提出了基于密度的改进的K-means算法,该算法采取聚类对象分布密度方法来确定初始聚类中心,选择相互距离最远的K个处于高密度区域的点作为初始聚类中心,理论分析与实验结果表明,改进的算法能取得更好的聚类结果。  相似文献   

4.
K-means算法的聚类效果与初始聚类中心的选择以及数据中的孤立点有很大关联,具有很强的不确定性。针对这个缺点,提出了一种优化初始聚类中心选择的K-means算法。该算法考虑数据集的分布情况,将样本点分为孤立点、低密度点和核心点,之后剔除孤立点与低密度点,在核心点中选取初始聚类中心,孤立点不参与聚类过程中各类样本均值的计算。按照距离最近原则将孤立点分配到相应类中完成整个算法。实验结果表明,改进的K-means算法能提高聚类的准确率,减少迭代次数,得到更好的聚类结果。  相似文献   

5.
K-means聚类算法简单高效,应用广泛。针对传统K-means算法初始聚类中心点的选择随机性导致算法易陷入局部最优以及K值需要人工确定的问题,为了得到最合适的初始聚类中心,提出一种基于距离和样本权重改进的K-means算法。该聚类算法采用维度加权的欧氏距离来度量样本点之间的远近,计算出所有样本的密度和权重后,令密度最大的点作为第一个初始聚类中心,并剔除该簇内所有样本,然后依次根据上一个聚类中心和数据集中剩下样本点的权重并通过引入的参数[τi]找出下一个初始聚类中心,不断重复此过程直至数据集为空,最后自动得到[k]个初始聚类中心。在UCI数据集上进行测试,对比经典K-means算法、WK-means算法、ZK-means算法和DCK-means算法,基于距离和权重改进的K-means算法的聚类效果更好。  相似文献   

6.
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。  相似文献   

7.
传统的K-means算法随机选取初始聚类中心,聚类结果不稳定,容易陷入局部最优解。针对聚类中心的敏感性,提出一种优化初始聚类中心的K-means算法。此算法利用数据集样本的分布特征计算样本点的密度并进行分类,在高密度区域中选择K个密度最大且相互距离超过某特定阈值的点作为初始聚类中心,并对低密度区域的噪声点单独处理。实验证明,优化后的算法能取得更好的聚类效果,且稳定性增强。  相似文献   

8.
基于密度的改进K均值算法及实现   总被引:4,自引:1,他引:3  
傅德胜  周辰 《计算机应用》2011,31(2):432-434
传统的K均值算法的初始聚类中心从数据集中随机产生,聚类结果很不稳定。提出一种基于密度算法优化初始聚类中心的改进K-means算法,该算法选择相互距离最远的k个处于高密度区域的点作为初始聚类中心。实验证明,改进的K-means算法能够消除对初始聚类中心的依赖,聚类结果有了较大的改进。  相似文献   

9.
传统K-means算法随机选取初始聚类中心,容易导致聚类结果不稳定,而优化初始聚类中心的K-means算法需要一定的参数选择,也会使聚类结果缺乏客观性。为此,根据样本空间分布紧密度信息,提出利用最小方差优化初始聚类中心的K-means算法。该算法运用样本空间分布信息,通过计算样本空间分布的方差得到样本紧密度信息,选择方差最小(即紧密度最高)且相距一定距离的样本作为初始聚类中心,实现优化的K-means聚类。在UCI机器学习数据库数据集和含有噪音的人工模拟数据集上的实验结果表明,该算法不仅能得到较好的聚类结果,且聚类结果稳定,对噪音具有较强的免疫性能。  相似文献   

10.
针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UCI数据集上的数据对改进算法进行实验,结果表明改进的算法提高了聚类的准确性。  相似文献   

11.
廖纪勇  吴晟  刘爱莲 《控制与决策》2021,36(12):3083-3090
选取合理的初始聚类中心是正确聚类的前提,针对现有的K-means算法随机选取聚类中心和无法处理离群点等问题,提出一种基于相异性度量选取初始聚类中心改进的K-means聚类算法.算法根据各数据对象之间的相异性构造相异性矩阵,定义了均值相异性和总体相异性两种度量准则;然后据此准则来确定初始聚类中心,并利用各簇中数据点的中位数代替均值以进行后续聚类中心的迭代,消除离群点对聚类准确率的影响.此外,所提出的算法每次运行结果保持一致,在初始化和处理离群点方面具有较好的鲁棒性.最后,在人工合成数据集和UCI数据集上进行实验,与3种经典聚类算法和两种优化初始聚类中心改进的K-means算法相比,所提出的算法具有较好的聚类性能.  相似文献   

12.
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+?)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+?算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。  相似文献   

13.
牛雷  孙忠林 《计算机科学》2018,45(2):226-230
初始聚类中心是指在聚类的过程中首次被选为中心的点或对象。针对传统的K-means算法由于随机选择初始聚类中心而造成的聚类结果不稳定的问题,提出PCA-AKM算法。该算法利用主成分分析方法提取数据集中的主要成分,实现数据降维,使用自定义指标密权值选择初始聚类中心,避免聚类中心局部最优问题。将该算法与K-means算法在UCI数据集上进行聚类对比,其聚类稳定性高于传统K-means算法。 在KDD CUP99数据集上,对所提算法进行入侵检测仿真,实验结果证明该算法检测率高,误检率低,能够有效提高入侵检测的准确率。  相似文献   

14.
针对传统K—means聚类算法对初始聚类中心的敏感性和随机性,造成容易陷入局部最优解和聚类结果波动性大的问题,结合密度法和最大化最小距离的思想,提出基于最近高密度点间的垂直中心点优化初始聚类中心的K—means聚类算法。该算法选取相互间距离最大的K对高密度点,并以这足对高密度点的均值作为聚类的初始中心,再进行K—means聚类。实验结果表明,该算法有效排除样本中含有的孤立点,并且聚类过程收敛速度快,聚类结果有更好的准确性和稳定性。  相似文献   

15.
客户分类作为客户关系管理(CRM)的重要管理方法,是企业进行市场营销的重要依据.通过对客户进行分类,有利于对客户价值进行准确评估,方便进行精准营销.本文通过对RFM模型数据集本身潜藏的先验结构化信息进行研究,标记出两组客户数据作为先验类别标记,进而得到两个初始聚类中心.基于传统K-means算法使用自适应方法确定K值和初始聚类中心.引入Must-link和Cannot-link两种约束将类别标记转换为成对约束信息,基于HMRF-KMeans成对约束,引入约束惩罚项和约束奖励项,实现对聚类引导和聚类结果的调整.使用改进的半监督聚类算法(RFM-SS-means)对标准数据集进行了测试,同时使用Food mart数据集对比了RFM-SS-means算法与传统K-means算法、two-steps算法的聚类效果.由实验结果可知,RFM-SS-means的CH系数最大,无需事先确定K值和初始聚类中心,聚类效果良好.  相似文献   

16.
针对二分K-均值算法由于随机选取初始中心及人为定义聚类数而造成的聚类结果不稳定问题,提出了基于密度和中心指标的Canopy二分K-均值算法SDC_Bisecting K-Means。首先计算样本中数据密度及其邻域半径;然后选出密度最小的数据并结合Canopy算法的思想进行聚类,将得到的簇的个数及其中心作为二分K-均值算法的输入参数;最后在二分K-均值算法的基础上引入指数函数和中心指标对原始样本进行聚类。利用UCI数据集和自建数据集进行模拟实验对比,结果表明SDC_Bisecting K-Means不仅使得聚类结果更精确,同时算法的运行速度更快、稳定性更好。  相似文献   

17.
迄今为止,在数据挖掘领域,人们已经实现了多种聚类算法,其中使用最广泛的当属K-means聚类算法.然而,在数据挖掘中,K-means算法面临的一个主要问题就是初始中心点选择问题.本文提出了一种结合关系矩阵和度中心性(Degree Centrality)的分析方法,从而确定K-means算法初始的k个中心点.与传统方法相比,本文算法可得到更加优质的聚类结果.实验结果表明该算法的有效性和可行性.  相似文献   

18.
优化初始聚类中心的K-means聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号