首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this research work, a novel fuzzy adaptive control is proposed to achieve a projective synchronization for a class of fractional-order chaotic systems with input nonlinearities (dead-zone together with sector nonlinearities). These master-slave systems under consideration are supposed to be with distinct models, different fractional-orders, unknown models, and dynamic external disturbances. The proposed control law consists of two main terms, namely: a fuzzy adaptive control term for appropriately approximating the uncertainties and a fractional-order variable-structure control term for robustly dealing with these inherent input nonlinearities. A Lyapunov approach is used to derive the updated laws and to prove the stability of the closed-loop control system. At last, a set of computer simulation results is carried out to illustrate and further validate the theoretical findings.  相似文献   

2.
In this paper, a modified generalized function projective synchronization scheme for a class of master–slave chaotic systems subject to dynamic disturbances and input nonlinearities (dead-zone and sector nonlinearities) is investigated. This synchronization system can be seen as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization and so on), in the sense that the master system has a scaling function matrix and the slave system has a scaling factor matrix. To practically achieve this generalized function synchronization, an adaptive fuzzy variable-structure control system is designed. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is employed to prove the boundedness of all signals of the closed-loop control system as well as the exponential convergence of the synchronization errors to an adjustable region. Simulations results are presented to illustrate the effectiveness of the proposed generalized function PS scheme.  相似文献   

3.
In this work, we combine the active and adaptive control theories, and propose a novel synchronization scheme for a class of fractional-order chaotic systems with different structure and different order. Based on the new version of fractional-order Lyapunov stability theory, we design the adaptive controllers and updating laws of different switching. We use the fractional-order Lorenz chaotic system and the fractional-order Chen chaotic system as examples to analyze the multi-switching synchronization process for fractional-order chaotic systems with different structures and different orders. Finally, numerical simulations are also given to illustrate the effectiveness and validation of the proposed method, and the model uncertainties and external disturbances are added to the considered systems to verify the robustness of the proposed controllers.  相似文献   

4.
基于模糊控制理论和滑模控制理论以及自适应控制理论,研究了一类含有外部扰动的不确定分数阶混沌系统的混合投影同步问题.提出了一种自适应模糊滑模控制的分数阶混沌系统投影同步方法.模糊逻辑系统用来逼近未知的非线性函数和外部扰动,并且对逼近误差采用了自适应控制,同时构造了一种具有较强鲁棒性的分数阶积分滑模面.应用分数阶Barbalat引理设计了自适应模糊滑模控制器和参数自适应律.最后数值仿真结果验证了所提控制方法的有效性.  相似文献   

5.
Four-dimensional chaotic systems are a very interesting topic for researchers, given their special features. This paper presents a novel fractional-order four-dimensional chaotic system with self-excited and hidden attractors, which includes only one constant term. The proposed system presents the phenomenon of multi-stability, which means that two or more different dynamics are generated from different initial conditions. It is one of few published works in the last five years belonging to the aforementioned category. Using Lyapunov exponents, the chaotic behavior of the dynamical system is characterized, and the sensitivity of the system to initial conditions is determined. Also, systematic studies of the hidden chaotic behavior in the proposed system are performed using phase portraits and bifurcation transition diagrams. Moreover, a design technique of a new fuzzy adaptive sliding mode control (FASMC) for synchronization of the fractional-order systems has been offered. This control technique combines an adaptive regulation scheme and a fuzzy logic controller with conventional sliding mode control for the synchronization of fractional-order systems. Applying Lyapunov stability theorem, the proposed control technique ensures that the master and slave chaotic systems are synchronized in the presence of dynamic uncertainties and external disturbances. The proposed control technique not only provides high performance in the presence of the dynamic uncertainties and external disturbances, but also avoids the phenomenon of chattering. Simulation results have been presented to illustrate the effectiveness of the presented control scheme.  相似文献   

6.
This paper proposes a novel adaptive sliding mode control (SMC) method for synchronization of non-identical fractional-order (FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances, finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller (ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization (PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.   相似文献   

7.
针对不确定分数阶永磁同步电机混沌系统信号跟踪控制问题,提出自适应模糊控制策略.首先,采用模糊逻辑系统来逼近系统中复杂分数阶函数.然后,基于分数阶李亚普诺夫稳定性理论构造模糊控制器以及分数阶参数自适应律,并在保证所有变量有界的情况下实现系统对已知信号的有效跟踪.最后,通过数值仿真结果验证该方法的有效性.  相似文献   

8.
针对一类系统不确定及受外界干扰的分数阶混沌系统,本文首先将分数阶微积分应用到滑模控制中,构造了一个具有分数阶积分项的滑模面.针对系统不确定及外界干扰项,基于分数阶Lyapunov稳定性理论与自适应控制方法,设计了一种滑模控制器以及分数阶次的参数自适应律,实现了两不确定分数阶混沌系统的同步控制,并辨识出相应误差系统中不确定项及外界干扰项的边界.在分数阶系统稳定性分析中使用的分数阶Lyapunov稳定性理论及相关函数都可以很好地运用到其它分数阶系统同步控制方法中.最后数值仿真验证了所提控制方法的可行性与有效性.  相似文献   

9.
10.
In this paper, the hybrid function projective synchronization (HFPS) of different chaotic systems with uncertain periodically time-varying parameters is carried out by Fourier series expansion and adaptive bounding technique. Fourier series expansion is used to deal with uncertain periodically time-varying parameters. Adaptive bounding technique is used to compensate the bound of truncation errors. Using the Lyapunov stability theory, an adaptive control law and six parameter updating laws are constructed to make the states of two different chaotic systems asymptotically synchronized. The control strategy does not need to know the parameters thoroughly if the time-varying parameters are periodical functions. Finally, in order to verify the effectiveness of the proposed scheme, the HFPS between Lorenz system and Chen system is completed successfully by using this scheme.  相似文献   

11.
The aim of this paper is to study complex modified projective synchronization (CMPS) between fractional-order chaotic nonlinear systems with incommensurate orders. Based on the stability theory of incommensurate fractional-order systems and active control method, control laws are derived to achieve CMPS in three situations including fractional-order complex Lorenz system driving fractional-order complex Chen system, fractional-order real Rössler system driving fractional-order complex Chen system, and fractional-order complex Lorenz system driving fractional-order real Lü system. Numerical simulations confirm the validity and feasibility of the analytical method.  相似文献   

12.
This paper presents a robust indirect model reference fuzzy control scheme for control and synchronization of chaotic nonlinear systems subject to uncertainties and external disturbances. The chaotic system with disturbance is modeled as a Takagi–Sugeno fuzzy system. Using a Lyapunov function, stable adaptation laws for the estimation of the parameters of the Takagi–Sugeno fuzzy model are derived as well as what the control signal should be to compensate for the uncertainties. The synchronization of chaotic systems is also considered in the paper. It is shown that by the use of an appropriate reference signal, it is possible to make the reference model follow the master chaotic system. Then, using the proposed model reference fuzzy controller, it is possible to force the slave to act as the reference system. In this way, the chaotic master and the slave systems are synchronized. It is shown that not only can the initial values of the master and the slave be different, but also there can be parametric differences between them. The proposed control scheme is simulated on the control and the synchronization of Duffing oscillators and Genesio–Tesi systems.  相似文献   

13.
混沌系统同步问题的研究是混沌保密通信技术研究的重要理论基础。针对函数投影同步中对时滞现象研究较少的问题,基于Lyapunov稳定性定理和自适应控制方法,设计了相应的自适应控制器和参数更新规则,实现了一类超混沌系统之间的广义函数投影滞后同步,以超混沌LS系统和超混沌Lü系统为例,验证理论的正确性和有效性,同时分析了外加噪声干扰和延时对同步控制效果的影响。数值仿真结果证实了所提方法的有效性、可行性和鲁棒性。  相似文献   

14.
对于不同维分数阶混沌系统的投影同步问题,设计了一种自适应滑模控制器。这使得带有内部不确定量和外部扰动的驱动,响应系统能够在任意预设的时间完成同步,自适应律可以逼近未知量的上界。并针对自适应滑模控制器由于干扰产生抖振的问题,提出了两种解决方案。首先是设计二维滑模控制表,将模糊控制方法加入滑模控制器组成模糊自适应滑模控制器...  相似文献   

15.
研究了不确定分数阶多涡卷混沌系统的自适应重复学习同步控制问题.通过利用滞环函数,设计了一类参数可调的分数阶多涡卷混沌系统.针对这类分数阶多涡卷混沌系统,在考虑非参数化不确定性、周期时变参数化不确定性、常参数化不确定性和外部扰动情况下,提出了一种重复学习同步控制方案.利用自适应神经网络技术补偿了系统中的函数型不确定性,通过自适应重复学习控制技术处理了周期时变参数化不确定性,并利用自适应鲁棒学习项处理了神经网络逼近误差和干扰的影响,实现了主系统和从系统的完全同步.综合利用分数阶频率分布模型和类Lyapunov复合能量函数方法证明了同步误差的学习收敛性.数值仿真验证了所提方法的有效性.  相似文献   

16.
The problems on chaos control and hybrid projective synchronization for a class of new chaotic systems are considered. First, new 4D chaotic systems are proposed by introducing an additional state into a 3D quadratic chaotic system and the states of the systems corresponding to the different ranges of parameter b are exhibited. Second, a single scalar adaptive feedback controller for chaos control of the systems is presented. Third, hybrid projective synchronization (HPS) of two of the chaotic systems with parameters in different conditions are investigated by presenting adaptive feedback control strategies with adaptive parameter update laws and considering controller simplification to achieve complete synchronization. Finally, numerical simulations are demonstrated to verify the effectiveness of the strategies.  相似文献   

17.
基于自适应模糊逻辑系统的一类混沌系统同步控制   总被引:1,自引:0,他引:1  
针对一类带有未知函数和干扰的混沌系统,进行了基于自适应模糊逻辑系统的自适应同步控制器的设计。首先基于模糊逼近原理,通过对该混沌系统中未知函数的输入输出进行采样,根据采样数据信息设计出具有参数自适应功能的Mamdani型模糊逻辑系统;然后利用该模糊逻辑系统给出一种带有参数自适应的驱动响应同步控制器设计方法;最后通过数值仿真算例表明了该方法的有效性。  相似文献   

18.
In this paper, a fuzzy adaptive variable-structure controller is investigated for a class of uncertain multi-input multi-output (MIMO) chaotic systems with both sector nonlinearities and dead-zones. A suitable adaptive fuzzy system is used to reasonably approximate the uncertain functions. A Lyapunov approach is employed to derive the parameter adaptation laws and prove the boundedness of all signals of the closed-loop system as well as the exponential convergence of the closed-loop errors to an adjustable region. The proposed controller can be applied to the systems with or without sector nonlinearities and/or dead-zones in the input. The effectiveness of the proposed fuzzy adaptive controller is illustrated throughout simulation results.  相似文献   

19.
Shao  Shuyi  Chen  Mou  Yan  Xiaohui 《Neural computing & applications》2018,29(12):1349-1361

In this paper, a prescribed performance adaptive neural network synchronization is investigated for a class of unknown chaotic systems in the presence of input saturation and external unknown disturbances. A prescribed performance function is employed to transform the constraint problem of chaotic synchronization control error into the problem of guaranteeing the boundedness of the transformed error. By introducing the Gaussian error function, the input saturation is handled. A neural network-based synchronization control scheme is then developed. Under the developed synchronization control scheme, the synchronization of uncertain chaotic systems is achieved with different initial conditions. Numerical simulation results further demonstrate the effectiveness of the proposed synchronization control scheme for unknown chaotic systems subject to external unknown disturbances and input saturation.

  相似文献   

20.
An indirect approach to adaptive interval type-2 fuzzy sliding mode control is proposed for the stable synchronization of two different chaotic nonlinear systems with different initial conditions under the presence of uncertainties involving process noises and external disturbances. The indirect model-based approach to adaptation is promoted here as a more suitable strategy for the fast changes that occurs in chaotic systems. In other words, the usual direct adaptive strategies may be too slow to respond to the inherently fast changing dynamics of chaotic systems. Using Lyapunov analysis, the sliding mode approach illustrates the asymptotic convergence of synchronization error to zero as well as good robustness against external disturbances. The interval type-2 structure aims to remedy the undesirable chattering phenomenon that is common in most conventional sliding mode control applications. It also provides a more effective equivalent model in the indirect approach, which leads to improved handling of the chaotic variations and uncertainties. Two numerical pairs of chaotic systems, i.e. the Lorenz and Chen’s systems and the Rössler system and modified Chua’s circuit are considered. In particular, in comparison with its type-1 fuzzy counterpart, the control effort is reduced by an average of 26.25% and 17.4% for the synchronization of the two corresponding systems, respectively. Furthermore, the integral of squared error is also improved by an average of 27.2% and 25.33%. This is while convergence time is reduced to less than 0.5 s and 1.5 s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号