首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
神经网络的表征能力给遥感图像目标检测任务提供了一个的便捷工具。然而,目前主流神经网络模型计算代价高限制了其在遥感图像实时目标检测任务的应用。提出一种轻量级神经网络模型用于遥感图像实时目标检测。实验结果表明,文中提出的方法在保持与Yolov3检测精度相当的情况下,模型大小约为Yolov3的十五分之一,网络模型在目标检测精度以及计算开销上可达到更好的均衡。  相似文献   

2.
缺陷检测设备算力和存储空间受限,实际应用场景缺陷难以检测。针对如何平衡模型的大小和检测精度的问题,提出了改进的轻量级yolov4目标检测算法。文章在CSPNet结构基础上,结合Ghost网络思想改进普通卷积结构,设计轻量级特征提取网络G-CSPNet,并在其中融入轻量级注意力机制ECA形成GE-CSPNet,使模型轻量化并提高特征提取能力。用GE-CSPNet替换yolov4的特征提取网络,并在yolov4颈部使用Ghost模块,即保留精度又大大降低网络结构参数量。通过公开数据集NEU-DET的对比实验表明:改进后的yolov4模型相比于原模型,模型的大小和参数量分别降低84.51%和84.06%,map可达94.48%。  相似文献   

3.
布匹瑕疵检测是纺织业质量管理的重要环节.在嵌入式设备上实现准确、快速的布匹瑕疵检测能有效降低成本,因而价值巨大.考虑到实际生产中花色布匹瑕疵具有背景复杂、数量差异大、极端长宽比和小瑕疵占比高等结构特性,提出一种基于轻量级模型的花色布匹瑕疵检测方法并将其部署在嵌入式设备Raspberry Pi 4B上.首先在一阶段目标检测网络YOLO的基础上用轻量级特征提取网络ShuffleNetV2提取花色布匹瑕疵的特征,以减少网络结构复杂度及参数量,提升检测速度;其次是检测头的解耦合,将分类与定位任务分离,以提升模型收敛速度;此外引入CIoU作为瑕疵位置回归损失函数,提高瑕疵定位准确性.实验结果表明,本文算法在Raspberry Pi 4B上可达8.6 FPS的检测速度,可满足纺织工业应用需求.  相似文献   

4.
输电线路安全是电网安全稳定运行的前提,但是频繁的鸟类活动却给输电线路造成了严重影响。为解决传统驱鸟方式的弊端,研究人员采用深度学习算法进行鸟类检测,然而深度学习算法需运行在性能好的服务器上,这必然会造成网络时延,无法做到实时驱鸟,所以应在移动端进行鸟类检测,但现有的目标检测算法模型较大,无法直接应用在移动端,因此本文提出一种适用于移动端的YOLO v3输电线路鸟类检测算法,将YOLO v3模型中的基础网络darknet-53替换成轻量级的特征提取网络MobileNet,实现了移动端输电线路鸟类检测。实验结果表明,在输电线路鸟类检测任务中,该模型准确率可达到83.57%,检测速度达到61 fps,可在内存4 GB的移动端平台稳定运行,能够满足输电线路鸟类检测任务的精度要求及实时性要求,具有良好的应用前景。  相似文献   

5.
高原鼠兔目标检测是对其进行种群数量统计及种群动态变化研究的基础,但传统的高原鼠兔智能监测系统的目标检测硬件设备大,在抽样采集数据时移动性较弱。针对此问题,提出一种可部署到便携式设备Jetson TX2上的基于改进YOLOv3模型的目标检测方法。该方法将YOLOv3的主干网络DarkNet53替换成MobileNet,并利用剪枝、微调等方法构建轻量级高原鼠兔目标检测模型,再将轻量化模型部署到Jetson TX2上。自然场景下高原鼠兔目标检测实验的结果表明:所提方法的检测平均精度(AP)、每秒检测帧数(FPS)和模型大小分别为97.36%、36和14.88 MB,优于主干网络替换后未裁剪的YOLOv3模型及原始YOLOv3模型,相较于原YOLOv3模型,AP在仅下降1.05个百分点的情况下,FPS提升了620%,模型大小压缩了93.67%,能够部署在便携设备上进行实时且准确的高原鼠兔目标检测。  相似文献   

6.
由于光照变化、乘客拥挤和站外噪声干扰大等问题,现今地铁进站客流人脸检测技术精度较低。为提高人脸检测精度,本文在YOLO2轻量级目标检测算法Tiny YOLO2原有网络结构基础上,首先利用不同数目的1×1卷积层对特征图进行压缩,然后将特征图尺寸重新调整到统一大小进行级联,得到高维特征图。缩减网络最后几层卷积核数量,用1×1卷积层替换原始网络的3×3卷积层,得到更深而且更窄的人脸检测网络。改进后的网络先后在Wider Face数据集和地铁进站客流数据集上进行训练,得到最终的人脸检测模型。加载训练好的人脸检测模型对随机选取的300幅站外乘客图片进行测试。测试结果表明:本文算法相比Tiny YOLO2原始人脸检测算法,召回率提高4.2%,单幅图片检测速度提高6.5%。同时在广泛使用的人脸检测算法评测数据集FDDB上进行测试,在误检数目为200的情况下,人脸检测准确率相比Tiny YOLO2平均提高5%,比SSD检测算法提高2%,而且本文算法能够在检测速度和精度之间取得较好的平衡,有较好的泛化性。  相似文献   

7.
血细胞检测和计数是血液检验中的一项重要内容,大量细胞显微图像形态多样、目标较小且背景复杂,自动识别血细胞仍然是一项具有挑战性的任务。为解决血细胞检测中复杂小目标识别问题,基于一阶段深度检测YOLO框架,提出了一种新颖的YOLO-Dense网络模型。通过使用[K]-means算法对锚框进行聚类,获得三种不同大小的潜在待识别目标的锚框,并在YOLO基础网络中引入残差模块和特征金字塔的多尺度模块,以提高对小目标的识别精度;通过跳层连接进行残差训练,有效解决深度网络梯度弥散和爆炸等问题;通过在网络架构中增加密集连接模块,使得提出的模型能够有效提升网络推断速度。实验结果表明:YOLO-Dense网络均值平均精度mAP和检测时间分别为0.86和24.9 ms。相比Faster R-CNN和原始的YOLO网络,YOLO-Dense模型在血细胞检测上取得了最好的性能。  相似文献   

8.
针对车辆目标检测中存在遮挡目标导致检测精度低、小目标检测效果差等问题,提出一种基于YOLO v4改进的目标检测算法YOLO v4-ASC。通过在主干提取网络尾部加入卷积块注意力模块,提升网络模型的特征表达能力;改进损失函数提升网络模型的收敛速度,利用Adam+SGDM优化方法替代原始模型优化方法SGDM,进一步提升模型检测性能。此外,利用K-Means聚类算法优化先验框尺寸大小,并合并交通场景数据集中的car、truck、bus类别为vehicle,将本文问题简化为二分类问题。实验结果表明,本文提出的YOLO v4-ASC目标检测算法在保持原算法检测速度的基础上,AP达到了70.05%,F1-score达到了71%,与原YOLO v4算法相比,AP提升了9.92个百分点,F1-score提升了9个百分点。  相似文献   

9.
Tiny YOLO和YOLOv3-tiny作为2种轻量级目标检测算法以其突出的速度表现而闻名。本文以这2种网络模型为基础,结合分组卷积并改进通道重排算法,改进了原来的损失函数,构建了一种新的更快的网络模型,通过改进YOLOv3的损失函数而增加其检测准确度。在PASCAL VOC数据集和COCO数据集上分别训练并且测试,该网络模型每秒处理的速度超过265张图片,Map值达到55.8%,准确度超过Tiny YOLO且与YOLOv3-tiny相仿。  相似文献   

10.
适用于嵌入式平台的E-YOLO人脸检测网络研究   总被引:1,自引:0,他引:1  
针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,将人脸检测问题转换为回归问题,将待检测的图像均分为S×S个单元格,每个单元格检测落在单元格内的目标。通过修改YOLO网络模型中的卷积神经网络结构,提高其检测的准确性,同时减少网络结构中卷积核的数目,降低模型的大小。实验结果表明,E-YOLO模型大小为43MB,视频的检测帧率为26FPS,在WIDERFACE和FDDB数据集上均有较高的准确率和检测速度,可以实现在嵌入式平台下的实时人脸检测。  相似文献   

11.
针对YOLOv4网络模型参数量大,难以在资源有限的设备平台上运行的问题,提出一种对YOLOv4轻量化的车辆和行人检测网络。以MobileNetV1为主干网络,将PANet和YOLO Head结构中的标准卷积替换成深度可分离卷积,减少模型参数量;同时利用跨深度卷积结合不同膨胀率的空洞卷积构建特征增强模块,改善不同预测层对车辆和行人尺度变化的适应能力,提高网络的检测精度。实验结果表明,上述网络模型大小为45.28MB,检测速度为44FPS,相比YOLOv4模型大小减少81.44%,检测速度提升91.30%,在PASCAL VOC2007测试集上,检测精度达到86.32%,相比MobileNetV1-YOLOv4原网络提高1.29%的精确度,能够满足实时高效的检测要求。  相似文献   

12.
针对实时目标检测YOLO(You Look Only Once)算法中存在的检测精度低和网络模型训练速度慢等问题,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,提出了在YOLO网络结构加入批再规范化处理的改进算法。该YOLO改进算法把卷积层经过卷积运算产生的特征图看作一个个神经元,然后对这些神经元进行规范化处理。同时,在网络结构中移除了Dropout,并增大了网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度以及通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。  相似文献   

13.
针对通用目标检测算法在检测小目标时存在效果不佳及漏检率较高等问题,提出了一种基于改进YOLO V3的道路小目标检测算法。对YOLO V3算法网络模型中的聚类算法进行优化,使用DBSCAN+K-Means聚类算法对训练数据集聚类分析,选取更合适的Anchor Box,以提高检测的平均精度和速度;同时引入Focal Loss损失函数代替原网络模型中的损失函数形成改进的YOLO V3算法。进而与其他目标检测算法在KITTI数据集上对行人目标进行对比检测,发现改进的YOLO V3算法能够有效降低小目标漏检率,大大提高检测的平均精度和检测速度。实验结果表明,在KITTI数据集上,改进的YOLO V3算法检测目标的平均精度达到92.43%,与未改进的YOLO V3算法相比提高了2.36%,且检测速度达到44.52?帧/s。  相似文献   

14.
本文针对火车轨道钢轨接头处螺栓组件目标较小的特点,采用基于YOLO v3的目标检测算法,用于钢轨连接处螺栓、垫圈、螺母等小目标的检测.具体方法是:以YOLO v3网络为基础,首先进行数据采集和人工标记,标记之后进行网络训练,最后再将训练好的模型应用于测试集,从而检测出图像序列中的螺栓组件目标,并通过候选框标注所检测目标位置、标签、置信度.经过实验验证表明:基于YOLO v3的钢轨螺栓目标检测算法,在螺栓组件检测过程中满足实时性要求的情况下,均值平均精度达到86.106%,帧处理速率达到38.21帧/s.  相似文献   

15.
基于深度学习的智能检测技术逐渐在复杂钢铁生产环境带钢表面缺陷检测过程中使用。为了应对在资源受限的边缘设备中部署高精度模型的挑战,提出一个面向复杂环境中带钢表面缺陷检测的轻量级DCN-YOLO模型,该模型将可形变卷积网络DCN与原始YOLOv5结合,以提高模型对不同尺寸和形状缺陷的灵敏度。为降低计算复杂度,在YOLO模型中引入了深度可分离卷积DSConv和高效通道注意力机制ECA两个轻量级模块,使模型更好地理解输入数据中各个通道之间的关系,在提高模型的检测精度和泛化能力的同时,大幅降低模型的计算量。进一步通过消融实验及横向对比实验,验证了每个创新模块的有效性。通过经典的开源带钢数据集NEU-DET和实际工业带钢数据集分别验证了轻量级DCN-YOLO模型在表面缺陷检测精度和计算复杂度方面的优势。  相似文献   

16.
为通过交通视频自动化检测驾驶员是否佩戴安全带,设计一种基于YOLO v3和Faster R-CNN的安全带单类别目标检测方法。基于YOLO v3网络训练车窗检测模型与车窗-驾驶员检测模型,得到驾驶员的精确位置;利用直方图均衡化、高斯滤波等方法对驾驶员图片进行图像增强操作,提高安全带区域的对比度;基于Faster R-CNN网络设计安全带单类别目标检测模型,将传统的分类问题转变为单类别目标检测问题。实验结果表明,模型检测准确率可达96.0%。相对于其它方法,适应性更强,鲁棒性更高,准确率相应提高。  相似文献   

17.
许虞俊  李晨 《计算机科学》2021,48(z2):265-269
目标检测是计算机视觉领域中一个相当活跃的研究领域,通过设计大型的深度卷积神经网络来提高目标检测的精度是一种十分有效的方法,然而目前在内存受限的应用场景中并不支持部署大型目标检测网.针对以上问题,文中提出了一种基于You Only Look Once(YOLO)系列单镜头目标检测网络设计原则的轻量级目标检测网,融合了GhostNet中的Ghost Module模块,并参考了MobileNet-v3中的通道注意力模块SE(Squeeze-and-Excitation),在卷积块中加入更优的ECA(Efficient Channel Attention)模块可以更好地利用可用的网络容量,使得网络在减少体系结构和计算的复杂度以及提升模型性能之间实现强的平衡;并且采用了Distance-IoU loss来解决检测框定位不准的问题,有效地提升了网络的收敛速度.最终模型的参数数量被压缩到了1.54 MB,小于YOLO Nano(即4.0MB),并且在VOC2007测试集上的mAP达到了72.1%,高于现有的YOLO Nano(即69.1%).  相似文献   

18.
提出了一种基于Darknet框架下YOLO9000算法的车辆多目标检测方法。该方法在YOLO9000算法基础下,根据训练结果和车辆目标特征对YOLO9000网络模型进行改进,并对其算法参数进行调整,获得更为适合于当前道路视频检测的YOLO9000-md网络模型下车辆多目标检测方法。为验证检测方法的有效性和完备性,对其模型进行了验证对比分析,同时对视频车辆进行了检测实验,实验结果表明,基于YOLO9000-md网络结构的车辆多目标检测方法,验证检测正确率达到了96.15%,具有一定的鲁棒性和通用性,为今后进行基于视频的更加智能化和自动化的数据分析提供了可靠的理论依据。  相似文献   

19.
YOLO是目前计算机视觉目标检测领域比较重要的算法模型之一. 基于现有YOLOv5s模型提出了一种扩展的YOLOv5多级分类目标检测算法模型. 首先, 对LabelImg标注工具进行功能扩展, 使其满足多级分类标签文件构建; 其次在YOLOv5s算法基础上修改检测头输出格式, 在骨干网络前端引入DenseBlock、Res2Net网络模型核心设计思想, 获取丰富的多维度特征信息, 增强特征信息的重用性, 实现了YOLO多级分类目标检测任务. 在开源安全帽数据集上同时以安全帽颜色作为二级分类进行训练验证, 平均精度, 精确率和召回率分别达到了95.81%、94.90%和92.54%, 实验结果验证了YOLOv5多级分类目标检测任务的可行性, 并为目标检测及多级分类目标检测任务提供一种新的思路和方法.  相似文献   

20.
基于改进YOLOv4算法的轻量化网络设计与实现   总被引:2,自引:0,他引:2  
在嵌入式设备上进行目标检测时易受能耗和功耗等限制,使得传统目标检测算法效果不佳。为此,对YOLOv4算法进行优化,设计YOLOv4-Mini网络结构,将其特征提取网络由CSPDarkNet53改为MobileNetv3-large并进行INT8量化处理,其中网络结构利用PW和DW卷积操作代替传统卷积操作以大幅减少计算量。采用SE模块为通道施加注意力机制,激活函数层运用h-swish非线性激活函数,在保证精度的情况下降低网络计算量。同时,通过量化感知训练将权重转为INT8类型,以实现模型轻量化,进一步降低网络参数量和计算量,从而在嵌入式设备上完成无人机数据集的目标检测任务。在NVIDIA Jetson Xavier NX设备上进行测试,结果显示,YOLOv4-MobileNetv3网络的mAP为34.3%,FPS为30,YOLOv4-Mini网络的mAP为32.5%,FPS为73,表明YOLOv4-Mini网络能够在低功耗、低能耗的嵌入式设备上完成目标实时检测任务。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号