首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With a focus on aero‐engine distributed control systems (DCSs) with Markov time delay, unknown input disturbance, and sensor and actuator simultaneous faults, a combined fault tolerant algorithm based on the adaptive sliding mode observer is studied. First, an uncertain augmented model of distributed control system is established under the condition of simultaneous sensor and actuator faults, which also considers the influence of the output disturbances. Second, an augmented adaptive sliding mode observer is designed and the linear matrix inequality (LMI) form stability condition of the combined closed‐loop system is deduced. Third, a robust sliding mode fault tolerant controller is designed based on fault estimation of the sliding mode observer, where the theory of predictive control is adopted to suppress the influence of random time delay on system stability. Simulation results indicate that the proposed sliding mode fault tolerant controller can be very effective despite the existence of faults and output disturbances, and is suitable for the simultaneous sensor and actuator faults condition.  相似文献   

2.
基于T-S模型的网络控制系统故障诊断   总被引:1,自引:0,他引:1  
针对一类参数不确定并具有时延和丢包情况的非线性网络控制系统,为达到快速准确的进行故障诊断的目的,提出了一种基于T-S模糊模型的故障诊断方法.通过建立此系统的T-S模糊模型,利用平行分布补偿时延的思想设计了满足系统稳定性条件的状态反馈控制器,以及通过引入随机切换系统表示数据有无丢失情况下的基于模糊观测器的鲁棒故障诊断方法,然后基于 Lyapunov函数和线性矩阵不等式方法给出了该闭环网络控制系统渐近稳定的充分条件,最后通过仿真例子验证了该方法能够使闭环控制系统渐进稳定以及能够准确的进行故障诊断,验证了所设计方法的有效性.  相似文献   

3.
This paper focuses on the problem of adaptive output feedback fault tolerant control for a nonlinear hydro‐turbine governing system. A dynamic mathematical model of the system is established, which aims to investigate the dynamic performance of the model under servomotor delay and actuator faults. Then, a fault estimation adaptive observer is proposed to achieve online real‐time diagnosis of system faults. Based on the online fault estimation information, an observer‐based adaptive output feedback fault tolerant controller is designed. Furthermore, under reasonable assumptions, the results demonstrate that the closed‐loop control system can achieve global asymptotic stability by Lyapunov function. Finally, the numerical simulation results are presented to indicate the satisfaction control effectiveness of the proposed scheme.  相似文献   

4.
A class of stochastic nonlinear systems with fault and multisource disturbances is concerned. The fault is a general bounded actuator fault, and the multiple disturbances include partial‐known information disturbance and white noise. A stochastic adaptive disturbance observer is constructed to estimate the partial‐known information disturbance, based on which the partial‐known information disturbance can be compensated in the feed‐foreword channel immediately. Also, the multiplicative white noise can be attenuated by the designed feedback controller. To make the composite system is satisfactory, a composite disturbance based‐observer control with fuzzy fault‐tolerant control is proposed. The pole placement and LMI method is applied to attenuate and reject the disturbance. Furthermore, the fault can be compensated simultaneously. To verify the feasibility and availability of the designed control scheme, a simulation example is shown finally.  相似文献   

5.

针对线性奇异摄动系统, 提出一种基于PI (proportional integral) 观测器的故障诊断和最优容错控制方法. 基于奇异摄动系统相关理论和矩阵变换技术, 给出PI 全维观测器存在的条件, 该观测器可以观测系统的快慢状态和故障系统的状态. 在估测到系统状态的基础上进一步考虑最优性, 应用最优控制理论, 设计状态反馈控制器, 提出基于PI 观测器的故障诊断器和最优容错控制器的设计方法. 最后的数值算例验证了所提出方法的可行性和正确性.

  相似文献   

6.
研究了具有输出传输长时延的网络控制系统基于观测器的故障检测,在总结其设计方法的基础上利用预测状态作为控制器的输入,设计了具有延迟补偿功能的状态观测器,通过求取观测器增益矩阵来使得状态重构能跟上实际状态的响应性能。产生的残差信号对干扰信号和不确定项具有较强的鲁棒性,同时对故障信号具有较高的灵敏度。最后给出了网络控制系统基于观测器的故障检测的设计步骤。  相似文献   

7.
This paper studies the problem of fault estimation and accommodation for a class of nonlinear time‐varying delay systems using adaptive fault diagnosis observer (AFDO). A novel fast adaptive fault estimation algorithm that does not need the derivative of the output vector is proposed to enhance the performance of fault estimation. Meanwhile, a delay‐dependent criteria is obtained based on free weighting matrix method with the purpose of reducing the conservatism of the AFDO design. On the basis of fault estimation, an observer‐based fault‐tolerant controller is designed to guarantee the stability of the closed‐loop system. In terms of matrix inequality, we derive sufficient conditions for the existence of the adaptive observer and fault‐tolerant controller. Simulation results are presented to illustrate the efficiency of the proposed method. Copyright © 2009 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

8.
非均匀采样数据系统时变故障估计与调节最优集成设计   总被引:1,自引:0,他引:1  
针对一类发生连续时变故障的非均匀采样数据系统,建立了一套主动容错控制最优设计方案. 首先,为了实现基于非均匀离散采样输出对连续故障的估计,同时鉴于现有自适应故障诊断方法无法直接推广于非均匀采样数据系统,提出一种连续时间增广观测器最优设计方法,既能保证故障估计误差快速收敛同时又对外界干扰鲁棒;并且提出一个迭代算法对故障估计延迟与系统鲁棒性进行权衡;进一步地,基于所获得的故障信息,并考虑估计误差和时变故障内采样特性对容错控制带来的不利因素,设计基于状态反馈的非均匀采样容错控制器来快速恢复故障系统性能;最后,通过对四容水箱基准实例的仿真来验证所提方法的有效性.  相似文献   

9.
The problems of fault diagnosis and fault‐tolerant control are considered for systems with measurement delays. In contrast to the present fault diagnosis and fault‐tolerant control approaches, which consider only the input delay and/or state delay, the main contribution of this paper consists of proposing a new observer‐based reduced‐order fault diagnoser construction approach and a design approach to dynamic self‐restore fault‐tolerant control law for systems with measurement delays. First, the time‐delay system is transformed into a delay‐free system in form by a special functional‐based delay‐free transformation approach for measurement delays. Then, the fault diagnosis is realized online via the proposed reduced‐order fault diagnoser. Using the results of fault diagnosis, two dynamic self‐restore control laws are designed to make the system isolated from faults. A numerical example demonstrates the feasibility and validity of the proposed scheme. © 2012 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

10.
This study presents a sensor cascading fault estimation and fault‐tolerant control (FTC) for a nonlinear Takagi‐Sugeno fuzzy model of hypersonic flight vehicles. Sensor cascading faults indicate the occurrence of source fault will cause another fault and the interval between them is really short, which makes it difficult to handle them in succession. A novel multidimensional generalized observer is used to estimate faults by integrating constant offset and time‐varying gain faults. Then, a fault‐tolerant controller is used to solve system nonlinearity and sensor fault problems. The observer and controller satisfy the performance index and are robust to external disturbances. A sufficient condition for the existence of observer and controller is derived on the basis of Lyapunov theory. Simulation results indicate the effectiveness of the proposed fault estimation and FTC scheme.  相似文献   

11.
In this paper, a fault‐tolerant control scheme is proposed to control the attitude of a rigid spacecraft subject to external disturbances and multiple system uncertainties, as well as actuator faults and saturation. More challengingly, it is assumed that the angular velocity is unavailable. A super‐twisting observer with time‐varying gain is firstly designed to accurately estimate the angular velocity in finite time. The choice of the time‐varying gain is dependent on a state‐norm estimate. Then, using the information from the observer (estimate of angular velocity), a fault‐tolerant controller is proposed, where an adaptive law is introduced to address the unknown loss of effectiveness and neural networks are used to approximate the unknown nonlinear functions. It is proved that the attitude orientations converge to the desired values at a fixed time. Finally, a simulation example is utilized to verify the effectiveness of the proposed scheme.  相似文献   

12.
基于滑模观测器的车辆电子稳定性控制系统故障重构   总被引:1,自引:0,他引:1  
针对车辆电子稳定性控制系统的横摆角速度传感器和侧向加速度传感器故障检测和重构问题,使用T-S模糊系统建立了车辆动力学系统的全局模型,依据滑模控制理论,给出了基于滑模观测器的传感器故障检测和重构方法,且所设计观测器满足给定的从未知输入到故障重构误差的L2增益性能要求.最后通过实测数据,验证了方法是可行的.  相似文献   

13.
This paper presents a fault-tolerant control (FTC) scheme for nonlinear systems which are connected in a networked control system. The nonlinear system is first transformed into two subsystems such that the unobservable part is affected by a fault and the observable part is unaffected. An observer is then designed which gives state estimates using a Luenberger observer and also estimates unknown parameter of the system; this helps in fault estimation. The FTC is applied in the presence of sampling due to the presence of a network in the loop. The controller gain is obtained using linear-quadratic regulator technique. The methodology is applied on a mechatronic system and the results show satisfactory performance.  相似文献   

14.
This paper investigates the problems of simultaneous actuator and sensor faults estimation, as well as the fault‐tolerant control scheme for a class of linear continuous‐time systems subject to external disturbances. First, the original system is transformed into a singular form by extending the actuator fault and sensor fault to be parts of the new state. Then, a new estimation technique named non‐fragile proportional‐derivative observer is designed for the singular system to achieve simultaneous estimations of states and faults. With the obtained estimations information, an integrated design of the non‐fragile output feedback fault‐tolerant controller is explored to compensate for the effect of faults by stabilizing the closed‐loop system. Finally, a simulation study on a two‐stage chemical reactor with recycle streams is provided to verify the effectiveness of the proposed approach.  相似文献   

15.
Intermittent actuator and sensor faults tolerant are simultaneously considered in a distributed control system with imperfect communication network. The asynchronous measurements of different output variables in one sampling period are synchronized through a novel two‐stage model‐based projection method. Different from centralized control network, in both layer‐to‐layer and in‐layer communication, the packet delay, loss and disordering are corrected by the predicted data from model predictive control. Moreover, a completely distributed state observer is established for both system states and sensor faults problem with bounded noise uncertainties. For the intermittent actuator faults, actuator plug‐and‐play design methods based on model predictive control has been introduced, making the actuator faults estimation omitted. The distributed stability conditions are derived for the proposed fault‐tolerant controller, and the online feasibility is explained in detail. Numerical simulation is given to verify the design procedure.  相似文献   

16.
This paper presents a new fault tolerant controller design method for a class of interconnected non‐Gaussian stochastic distribution system with boundary conditions. In order to obtain the fault estimation value, an observer based fault detection and fault diagnosis algorithms are presented at first, then a collaborative fault tolerant controller is designed based on the adaptive control strategy. Different from most of the existing fault tolerant controllers, when fault occurs the controller need to be reconstructed is for the healthy subsystem in this paper. That is to say, the fault is compensated not by the faulty subsystem itself but by the healthy one. The proposed method is used to a simulation example for demonstration, and the effectiveness is verified.  相似文献   

17.
The main aim of this paper is to design an active fault tolerant controller for switched positive linear systems. A theorem is proved for fault and state estimation of switched positive linear systems in terms of matrix inequality by considering average dwell‐time approach. By utilizing the theorem results, not only a fast and exact estimation of fault and state is obtained but also the positivity of state estimation is ensured. The feasibility problem is solved by formulating it into a special sequential optimization problem subject to LMI constraints. Based on the fault estimation information, an observer‐based fault tolerant control guaranties the stability and positivity of the closed‐loop system. Finally, a practical example including a data communication network is presented to illustrate the efficiency of the proposed method.  相似文献   

18.
The purpose of fault diagnosis of stochastic distribution control systems is to use the measured input and the system output probability density function to obtain the fault estimation information. A fault diagnosis and sliding mode fault‐tolerant control algorithms are proposed for non‐Gaussian uncertain stochastic distribution control systems with probability density function approximation error. The unknown input caused by model uncertainty can be considered as an exogenous disturbance, and the augmented observation error dynamic system is constructed using the thought of unknown input observer. Stability analysis is performed for the observation error dynamic system, and the H performance is guaranteed. Based on the information of fault estimation and the desired output probability density function, the sliding mode fault‐tolerant controller is designed to make the post‐fault output probability density function still track the desired distribution. This method avoids the difficulties of design of fault diagnosis observer caused by the uncertain input, and fault diagnosis and fault‐tolerant control are integrated. Two different illustrated examples are given to demonstrate the effectiveness of the proposed algorithm. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A new fault‐tolerant control based on augmented state estimator and probability density function (PDF) is proposed for a stochastic distribution system (SDS) with time‐delay and additive fault. First, a system model based on a PDF with the additive fault is constructed by using square‐root rational B‐spline neural networks. Second, an augmented system is obtained by converting the additive fault as an auxiliary state variable. In this framework, a robust augmented state estimator is designed to estimate the original states and the additive fault simultaneously. Then, based on the obtained estimation of fault, a delay‐dependent fault‐tolerant control is designed to compensate the fault. Finally, the numerical simulations show the effectiveness of the proposed method.  相似文献   

20.
针对一类含有未知干扰的不匹配非线性Lipschitz系统,提出了基于自适应滑模观测器的执行器故障重构方法.首先引入辅助输出矩阵,使得辅助输出系统的观测器匹配条件得以满足,同时设计了高增益观测器实现对未知辅助输出的精确估计;然后针对辅助输出系统建立故障重构滑模观测器,设计了自适应律在线修正滑模控制器增益,考虑故障上界未知的前提下,提出了观测器状态估计误差稳定的存在定理,运用Schur补引理将观测器反馈增益矩阵设计方法转化为求解线性矩阵不等式约束优化问题,同时引入线性变换矩阵,在故障上界未知的前提下设计了滑模控制增益,使得输出估计误差收敛稳定,确保了滑模运动在有限时间内发生,在此基础上利用等效控制输出误差注入原理实现了执行器故障重构;最后通过仿真算例验证了本文方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号