首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
目的 卷积神经网络结合U-Net架构的深度学习方法广泛应用于各种医学图像处理中,取得了良好的效果,特别是在局部特征提取上表现出色,但由于卷积操作本身固有的局部性,导致其在全局信息获取上表现不佳。而基于Transformer的方法具有较好的全局建模能力,但在局部特征提取方面不如卷积神经网络。为充分融合两种方法各自的优点,提出一种基于分组注意力的医学图像分割模型(medical image segmentation module based on group attention,GAU-Net)。方法 利用注意力机制,设计了一个同时集成了Swin Transformer和卷积神经网络的分组注意力模块,并嵌入网络编码器中,使网络能够高效地对图像的全局和局部重要特征进行提取和融合;在注意力计算方式上,通过特征分组的方式,在同一尺度特征内,同时进行不同的注意力计算,进一步提高网络提取语义信息的多样性;将提取的特征通过上采样恢复到原图尺寸,进行像素分类,得到最终的分割结果。结果 在Synapse多器官分割数据集和ACDC (automated cardiac diagnosis challenge)数据集上进行了相关实验验证。在Synapse数据集中,Dice值为82.93%,HD(Hausdorff distance)值为12.32%,相较于排名第2的方法,Dice值提高了0.97%,HD值降低了5.88%;在ACDC数据集中,Dice值为91.34%,相较于排名第2的方法提高了0.48%。结论 本文提出的医学图像分割模型有效地融合了Transformer和卷积神经网络各自的优势,提高了医学图像分割结果的精确度。  相似文献   

2.
目的 深层卷积神经网络在单幅图像超分辨率任务中取得了巨大成功。从3个卷积层的超分辨率重建卷积神经网络(super-resolution convolutional neural network,SRCNN)到超过300层的残差注意力网络(residual channel attention network,RCAN),网络的深度和整体性能有了显著提高。然而,尽管深层网络方法提高了重建图像的质量,但因计算量大、实时性差等问题并不适合真实场景。针对该问题,本文提出轻量级的层次特征融合空间注意力网络来快速重建图像的高频细节。方法 网络由浅层特征提取层、分层特征融合层、上采样层和重建层组成。浅层特征提取层使用1个卷积层提取浅层特征,并对特征通道进行扩充;分层特征融合层由局部特征融合和全局特征融合组成,整个网络包含9个残差注意力块(residual attention block,RAB),每3个构成一个残差注意力组,分别在组内和组间进行局部特征融合和全局特征融合。在每个残差注意力块内部,首先使用卷积层提取特征,再使用空间注意力模块对特征图的不同空间位置分配不同的权重,提高高频区域特征的注意力,以快速恢复高频细节信息;上采样层使用亚像素卷积对特征图进行上采样,将特征图放大到目标图像的尺寸;重建层使用1个卷积层进行重建,得到重建后的高分辨率图像。结果 在Set5、Set14、BSD(Berkeley segmentation dataset)100、Urban100和Manga109测试数据集上进行测试。当放大因子为4时,峰值信噪比分别为31.98 dB、28.40 dB、27.45 dB、25.77 dB和29.37 dB。本文算法比其他同等规模的网络在测试结果上有明显提升。结论 本文提出的多层特征融合注意力网络,通过结合空间注意力模块和分层特征融合结构的优势,可以快速恢复图像的高频细节并且具有较小的计算复杂度。  相似文献   

3.
邓滔 《计算机应用研究》2021,38(4):1224-1229
针对行人再识别问题,目前多数方法将行人的局部或全局特征分开考虑,从而忽略了行人整体之间的关系,即行人全局特征和局部特征之间的联系。本文提出一种增强特征融合网络(enhanced feature convergent network,EFCN)。在全局分支中,提出适用于获取全局特征的注意力网络作为嵌入特征,嵌入在基础网络模型中以提取行人的全局特征;在局部分支中,提出循环门单元变换网络(gated recurrent unit change network,GRU-CN)得到代表性的局部特征;再使用特征融合方法将全局特征和局部特征融合成最终的行人特征;最后借助损失函数训练网络。通过大量的对比实验表明,该算法网络模型在标准的Re-ID数据集上可以获得较好的实验结果。提出的增强特征融合网络能提取辨别性较强的行人特征,该模型能够应用于大场景非重叠多摄像机下的行人再识别问题,具有较高的识别能力和识别精度,且对背景变化的行人图像能提取具有较强的鲁棒性特征。  相似文献   

4.
目的 度量学习是少样本学习中一种简单且有效的方法,学习一个丰富、具有判别性和泛化性强的嵌入空间是度量学习方法实现优秀分类效果的关键。本文从样本自身的特征以及特征在嵌入空间中的分布出发,结合全局与局部数据增强实现了一种元余弦损失的少样本图像分类方法(a meta-cosine loss for few-shot image classification,AMCL-FSIC)。方法 首先,从数据自身特征出发,将全局与局部的数据增广方法结合起来,利于局部信息提供更具区别性和迁移性的信息,使训练模型更多关注图像的前景信息。同时,利用注意力机制结合全局与局部特征,以得到更丰富更具判别性的特征。其次,从样本特征在嵌入空间中的分布出发,提出一种元余弦损失(meta-cosine loss,MCL)函数,优化少样本图像分类模型。使用样本与类原型间相似性的差调整不同类的原型,扩大类间距,使模型测试新任务时类间距更加明显,提升模型的泛化能力。结果 分别在5个少样本经典数据集上进行了实验对比,在FC100(Few-shot Cifar100)和CUB(Caltech-UCSD Birds-200-2011)数据集上,本文方法均达到了目前最优分类效果;在MiniImageNet、TieredImageNet和Cifar100数据集上与对比模型的结果相当。同时,在MiniImageNet,CUB和Cifar100数据集上进行对比实验以验证MCL的有效性,结果证明提出的MCL提升了余弦分类器的分类效果。结论 本文方法能充分提取少样本图像分类任务中的图像特征,有效提升度量学习在少样本图像分类中的准确率。  相似文献   

5.
目的 卫星图像往往目标、背景复杂而且带有噪声,因此使用人工选取的特征进行卫星图像的分类就变得十分困难。提出一种新的使用卷积神经网络进行卫星图像分类的方案。使用卷积神经网络可以提取卫星图像的高层特征,进而提高卫星图像分类的识别率。方法 首先,提出一个包含六类图像的新的卫星图像数据集来解决卷积神经网络的有标签训练样本不足的问题。其次,使用了一种直接训练卷积神经网络模型和3种预训练卷积神经网络模型来进行卫星图像分类。直接训练模型直接在文章提出的数据集上进行训练,预训练模型先在ILSVRC(the ImageNet large scale visual recognition challenge)-2012数据集上进行预训练,然后在提出的卫星图像数据集上进行微调训练。完成微调的模型用于卫星图像分类。结果 提出的微调预训练卷积神经网络深层模型具有最高的分类正确率。在提出的数据集上,深层卷积神经网络模型达到了99.50%的识别率。在数据集UC Merced Land Use上,深层卷积神经网络模型达到了96.44%的识别率。结论 本文提出的数据集具有一般性和代表性,使用的深层卷积神经网络模型具有很强的特征提取能力和分类能力,且是一种端到端的分类模型,不需要堆叠其他模型或分类器。在高分辨卫星图像的分类上,本文模型和对比模型相比取得了更有说服力的结果。  相似文献   

6.
目的 因为有雨图像中雨线存在方向、密度和大小等各方面的差异,单幅图像去雨依旧是一个充满挑战的研究问题。现有算法在某些复杂图像上仍存在过度去雨或去雨不足等问题,部分复杂图像的边缘高频信息在去雨过程中被抹除,或图像中残留雨成分。针对上述问题,本文提出三维注意力和Transformer去雨网络(three-dimension attention and Transformer deraining network,TDATDN)。方法 将三维注意力机制与残差密集块结构相结合,以解决残差密集块通道高维度特征融合问题;使用Transformer计算特征全局关联性;针对去雨过程中图像高频信息被破坏和结构信息被抹除的问题,将多尺度结构相似性损失与常用图像去雨损失函数结合参与去雨网络训练。结果 本文将提出的TDATDN网络在Rain12000雨线数据集上进行实验。其中,峰值信噪比(peak signal to noise ratio,PSNR)达到33.01 dB,结构相似性(structural similarity,SSIM)达到0.927 8。实验结果表明,本文算法对比以往基于深度学习的神经网络去雨算法,显著改善了单幅图像去雨效果。结论 本文提出的TDATDN图像去雨网络结合了3D注意力机制、Transformer和编码器—解码器架构的优点,可较好地完成单幅图像去雨工作。  相似文献   

7.
目的 抑郁症是一种常见的情感性精神障碍,会带来诸多情绪和身体问题。在实践中,临床医生主要通过面对面访谈并结合自身经验评估抑郁症的严重程度。这种诊断方式具有较强的主观性,整个过程比较耗时,且易造成误诊、漏诊。为了客观便捷地评估抑郁症的严重程度,本文围绕面部图像研究深度特征提取及其在抑郁症自动识别中的应用,基于人脸图像的全局和局部特征,构建一种融合通道层注意力机制的多支路卷积网络模型,进行抑郁症严重程度的自动识别。方法 首先从原始视频提取图像,使用多任务级联卷积神经网络检测人脸关键点。在对齐后分别裁剪出整幅人脸图像和眼睛、嘴部区域图像,然后将它们分别送入与通道层注意力机制结合的深度卷积神经网络以提取全局特征和局部特征。在训练时,将训练图像进行标准化预处理,并通过翻转、裁剪等操作增强数据。在特征融合层将3个支路网络提取的特征拼接在一起,最后输出抑郁症严重程度的分值。结果 在AVEC2013(The Continuous Audio/Visual Emotion and Depression Recognition Challenge)抑郁症数据库上平均绝对误差为6.74、均方根误差为8.70,相较于Baseline分别降低4.14和4.91;在AVEC2014抑郁症数据库上平均绝对误差和均方根误差分别为6.56和8.56,相较于Baseline分别降低2.30和2.30。同时,相较于其他抑郁症识别方法,本文方法取得了最低的平均绝对误差和均方根误差。结论 本文方法能够以端到端的形式实现抑郁症的自动识别,将特征提取和抑郁症严重程度识别在统一框架下进行和调优,学习到的多种视觉特征更加具有鉴别性,实验结果表明了该算法的有效性和可行性。  相似文献   

8.
目的 近年来,卷积神经网络在解决图像超分辨率的问题上取得了巨大成功,不同结构的网络模型相继被提出。通过学习,这些网络模型对输入图像的特征进行抽象、组合,进而建立了从低分辨率的输入图像到高分辨率的目标图像的有效非线性映射。在该过程中,无论是图像的低阶像素级特征,还是高阶各层抽象特征,都对像素间相关性的挖掘起了重要作用,影响着目标高分辨图像的性能。而目前典型的超分辨率网络模型,如SRCNN(super-resolution convolutional neural network)、VDSR(very deep convolutional networks for super-resolution)、LapSRN(Laplacian pyramid super-resolution networks)等,都未充分利用这些多层次的特征。方法 提出一种充分融合网络多阶特征的图像超分辨率算法:该模型基于递归神经网络,由相同的单元串联构成,单元间参数共享;在每个单元内部,从低阶到高阶的逐级特征被级联、融合,以获得更丰富的信息来强化网络的学习能力;在训练中,采用基于残差的策略,单元内使用局部残差学习,整体网络使用全局残差学习,以加快训练速度。结果 所提出的网络模型在通用4个测试集上,针对分辨率放大2倍、3倍、4倍的情况,与深层超分辨率网络VDSR相比,平均分别能够获得0.24 dB、0.23 dB、0.19 dB的增益。结论 实验结果表明,所提出的递归式多阶特征融合图像超分辨率算法,有效提升了性能,特别是在细节非常丰富的Urban100数据集上,该算法对细节的处理效果尤为明显,图像的客观质量与主观质量都得到显著改善。  相似文献   

9.
目的 以卷积神经网络为代表的深度学习方法已经在单帧图像超分辨领域取得了丰硕成果,这些方法大多假设低分辨图像不存在模糊效应。然而,由于相机抖动、物体运动等原因,真实场景下的低分辨率图像通常会伴随着模糊现象。因此,为了解决模糊图像的超分辨问题,提出了一种新颖的Transformer融合网络。方法 首先使用去模糊模块和细节纹理特征提取模块分别提取清晰边缘轮廓特征和细节纹理特征。然后,通过多头自注意力机制计算特征图任一局部信息对于全局信息的响应,从而使Transformer融合模块对边缘特征和纹理特征进行全局语义级的特征融合。最后,通过一个高清图像重建模块将融合特征恢复成高分辨率图像。结果 实验在2个公开数据集上与最新的9种方法进行了比较,在GOPRO数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN(gated fusion network),峰值信噪比(peak signal-to-noive ratio,PSNR)分别提高了0.12 dB、0.18 dB、0.07 dB;在Kohler数据集上进行2倍、4倍、8倍超分辨重建,相比于性能第2的模型GFN,PSNR值分别提高了0.17 dB、0.28 dB、0.16 dB。同时也在GOPRO数据集上进行了对比实验以验证Transformer融合网络的有效性。对比实验结果表明,提出的网络明显提升了对模糊图像超分辨重建的效果。结论 本文所提出的用于模糊图像超分辨的Transformer融合网络,具有优异的长程依赖关系和全局信息捕捉能力,其通过多头自注意力层计算特征图任一局部信息在全局信息上的响应,实现了对去模糊特征和细节纹理特征在全局语义层次的深度融合,从而提升了对模糊图像进行超分辨重建的效果。  相似文献   

10.
目的 在行为识别任务中,妥善利用时空建模与通道之间的相关性对于捕获丰富的动作信息至关重要。尽管图卷积网络在基于骨架信息的行为识别方面取得了稳步进展,但以往的注意力机制应用于图卷积网络时,其分类效果并未获得明显提升。基于兼顾时空交互与通道依赖关系的重要性,提出了多维特征嵌合注意力机制(multi-dimensional feature fusion attention mechanism,M2FA)。方法 不同于现今广泛应用的行为识别框架研究理念,如卷积块注意力模块(convolutional block attention module,CBAM)、双流自适应图卷积网络(two-stream adaptive graph convolutional network,2s-AGCN)等,M2FA通过嵌入在注意力机制框架中的特征融合模块显式地获取综合依赖信息。对于给定的特征图,M2FA沿着空间、时间和通道维度使用全局平均池化操作推断相应维度的特征描述符。特征图使用多维特征描述符的融合结果进行过滤学习以达到细化自适应特征的目的,并通过压缩全局动态信息的全局特征分支与仅使用逐点卷积层的局部特征分支相互嵌合获取多尺度动态信息。结果 实验在骨架行为识别数据集NTU-RGBD和Kinetics-Skeleton中进行,分析了M2FA与其基线方法2s-AGCN及最新提出的图卷积模型之间的识别准确率对比结果。在Kinetics-Skeleton验证集中,相比于基线方法2s-AGCN,M2FA分类准确率提高了1.8%;在NTU-RGBD的两个不同基准分支中,M2FA的分类准确率比基线方法2s-AGCN分别提高了1.6%和1.0%。同时,消融实验验证了多维特征嵌合机制的有效性。实验结果表明,提出的M2FA改善了图卷积骨架行为识别方法的分类效果。结论 通过与基线方法2s-AGCN及目前主流图卷积模型比较,多维特征嵌合注意力机制获得了最高的识别精度,可以集成至基于骨架信息的体系结构中进行端到端的训练,使分类结果更加准确。  相似文献   

11.
目的 为了充分提取版画、中国画、油画、水彩画和水粉画等艺术图像的整体风格和局部细节特征,实现计算机自动分类检索艺术图像的需求,提出通过双核压缩激活模块(double kernel squeeze-and-excitation,DKSE)和深度可分离卷积搭建卷积神经网络对艺术图像进行分类。方法 根据SKNet(selective kernel networks)自适应调节感受野提取图像整体与细节特征的结构特点和SENet(squeeze-and-excitation networks)增强通道特征的特点构建DKSE模块,利用DKSE模块分支上的卷积核提取输入图像的整体特征与局部细节特征;将分支上的特征图进行特征融合,并对融合后的特征图进行特征压缩和激活处理;将处理后的特征加权映射到不同分支的特征图上并进行特征融合;通过DKSE模块与深度可分离卷积搭建卷积神经网络对艺术图像进行分类。结果 使用本文网络模型对有无数据增强(5类艺术图像数据增强后共25 634幅)处理的数据分类,数据增强后的分类准确率比未增强处理的准确率高9.21%。将本文方法与其他网络模型和传统分类方法相比,本文方法的分类准确率达到86.55%,比传统分类方法高26.35%。当DKSE模块分支上的卷积核为1×1和5×5,且放在本文网络模型第3个深度可分离卷积后,分类准确率达到87.58%。结论 DKSE模块可以有效提高模型分类性能,充分提取艺术图像的整体与局部细节特征,比传统网络模型具有更好的分类准确率。  相似文献   

12.
目的 基于内容的图像检索方法利用从图像提取的特征进行检索,以较小的时空开销尽可能准确的找到与查询图片相似的图片。方法 本文从浅层特征、深层特征和特征融合3个方面对图像检索国内外研究进展和面临的挑战进行介绍,并对未来的发展趋势进行展望。结果 尺度下不变特征转换(SIFT)存在缺乏空间几何信息和颜色信息,高层语义的表达不够等问题;而CNN (convolutional neural network)特征则往往缺乏足够的底层信息。为了丰富描述符的信息,通常将SIFT与CNN等特征进行融合。融合方式主要包括:串连、核融合、图融合、索引层次融合和得分层(score-level)融合。"融合"可以有效地利用不同特征的互补性,提高检索的准确率。结论 与SIFT相比,CNN特征的通用性及几何不变性都不够强,依然是图像检索领域面临的挑战。  相似文献   

13.
目的 基于深度学习的多聚焦图像融合方法主要是利用卷积神经网络(convolutional neural network,CNN)将像素分类为聚焦与散焦。监督学习过程常使用人造数据集,标签数据的精确度直接影响了分类精确度,从而影响后续手工设计融合规则的准确度与全聚焦图像的融合效果。为了使融合网络可以自适应地调整融合规则,提出了一种基于自学习融合规则的多聚焦图像融合算法。方法 采用自编码网络架构,提取特征,同时学习融合规则和重构规则,以实现无监督的端到端融合网络;将多聚焦图像的初始决策图作为先验输入,学习图像丰富的细节信息;在损失函数中加入局部策略,包含结构相似度(structural similarity index measure,SSIM)和均方误差(mean squared error,MSE),以确保更加准确地还原图像。结果 在Lytro等公开数据集上从主观和客观角度对本文模型进行评价,以验证融合算法设计的合理性。从主观评价来看,模型不仅可以较好地融合聚焦区域,有效避免融合图像中出现伪影,而且能够保留足够的细节信息,视觉效果自然清晰;从客观评价来看,通过将模型融合的图像与其他主流多聚焦图像融合算法的融合图像进行量化比较,在熵、Qw、相关系数和视觉信息保真度上的平均精度均为最优,分别为7.457 4,0.917 7,0.978 8和0.890 8。结论 提出了一种用于多聚焦图像的融合算法,不仅能够对融合规则进行自学习、调整,并且融合图像效果可与现有方法媲美,有助于进一步理解基于深度学习的多聚焦图像融合机制。  相似文献   

14.
葛芸  马琳  储珺 《中国图象图形学报》2020,25(12):2665-2676
目的 高分辨率遥感图像检索中,单一特征难以准确描述遥感图像的复杂信息。为了充分利用不同卷积神经网络(convolutional neural networks,CNN)的学习参数来提高遥感图像的特征表达,提出一种基于判别相关分析的方法融合不同CNN的高层特征。方法 将高层特征作为特殊的卷积层特征处理,为了更好地保留图像的原始空间信息,在图像的原始输入尺寸下提取不同高层特征,再对高层特征进行最大池化来获得显著特征;计算高层特征的类间散布矩阵,结合判别相关分析来增强同类特征的联系,并突出不同类特征之间的差异,从而提高特征的判别力;选择串联与相加两种方法来对不同特征进行融合,用所得融合特征来检索高分辨率遥感图像。结果 在UC-Merced、RSSCN7和WHU-RS19数据集上的实验表明,与单一高层特征相比,绝大多数融合特征的检索准确率和检索时间都得到有效改进。其中,在3个数据集上的平均精确率均值(mean average precision,mAP)分别提高了10.4% 14.1%、5.7% 9.9%和5.9% 17.6%。以检索能力接近的特征进行融合时,性能提升更明显。在UC-Merced数据集上,融合特征的平均归一化修改检索等级(average normalized modified retrieval rank,ANMRR)和mAP达到13.21%和84.06%,与几种较新的遥感图像检索方法相比有一定优势。结论 本文提出的基于判别相关分析的特征融合方法有效结合了不同CNN高层特征的显著信息,在降低特征冗余性的同时,提升了特征的表达能力,从而提高了遥感图像的检索性能。  相似文献   

15.
目的 图像检索是计算机视觉领域的一项基础任务,大多采用卷积神经网络和对称式学习策略,导致所需训练数据量大、模型训练时间长、监督信息利用不充分。针对上述问题,本文提出一种Transformer与非对称学习策略相结合的图像检索方法。方法 对于查询图像,使用Transformer生成图像的哈希表示,利用哈希损失学习哈希函数,使图像的哈希表示更加真实。对于待检索图像,采用非对称式学习策略,直接得到图像的哈希表示,并将哈希损失与分类损失相结合,充分利用监督信息,提高训练速度。在哈希空间通过计算汉明距离实现相似图像的快速检索。结果 在CIFAR-10和NUS-WIDE两个数据集上,将本文方法与主流的5种对称式方法和性能最优的两种非对称式方法进行比较,本文方法的mAP(mean average precision)比当前最优方法分别提升了5.06%和4.17%。结论 本文方法利用Transformer提取图像特征,并将哈希损失与分类损失相结合,在不增加训练数据量的前提下,减少了模型训练时间。所提方法性能优于当前同类方法,能够有效完成图像检索任务。  相似文献   

16.
目的 图像分割的中心任务是寻找更强大的特征表示,而合成孔径雷达(synthetic aperture radar,SAR)图像中斑点噪声阻碍特征提取。为加强对SAR图像特征的提取以及对特征充分利用,提出一种改进的全卷积分割网络。方法 该网络遵循编码器—解码器结构,主要包括上下文编码模块和特征融合模块两部分。上下文编码模块(contextual encoder module,CEM)通过捕获局部上下文和通道上下文信息增强对图像的特征提取;特征融合模块(feature fusion module,FFM)提取高层特征中的全局上下文信息,将其嵌入低层特征,然后将增强的低层特征并入解码网络,提升特征图分辨率恢复的准确性。结果 在两幅真实SAR图像上,采用5种基于全卷积神经网络的分割算法作为对比,并对CEM与CEM-FFM分别进行实验。结果<显示,该网络分割结果的总体精度(overall accuracy,OA)、平均精度(average accuracy,AA)与Kappa系数比5种先进算法均有显著提升。其中,网络在OA上表现最好,CEM在两幅SAR图像上OA分别为91.082%和90.903%,较对比算法中性能最优者分别提高了0.948%和0.941%,证实了CEM的有效性。而CEM-FFM在CEM基础上又将结果分别提高了2.149%和2.390%,验证了FFM的有效性。结论 本文提出的分割网络较其他方法对图像具有更强大的特征提取能力,且能更好地将低层特征中的空间信息与高层特征中的语义信息融合为一体,使得网络对特征的表征能力更强、图像分割结果更准确。  相似文献   

17.
目的 显著性检测是图像和视觉领域一个基础问题,传统模型对于显著性物体的边界保留较好,但是对显著性目标的自信度不够高,召回率低,而深度学习模型对于显著性物体的自信度高,但是其结果边界粗糙,准确率较低。针对这两种模型各自的优缺点,提出一种显著性模型以综合利用两种方法的优点并抑制各自的不足。方法 首先改进最新的密集卷积网络,训练了一个基于该网络的全卷积网络(FCN)显著性模型,同时选取一个现有的基于超像素的显著性回归模型,在得到两种模型的显著性结果图后,提出一种融合算法,融合两种方法的结果以得到最终优化结果,该算法通过显著性结果Hadamard积和像素间显著性值的一对一非线性映射,将FCN结果与传统模型的结果相融合。结果 实验在4个数据集上与最新的10种方法进行了比较,在HKU-IS数据集中,相比于性能第2的模型,F值提高了2.6%;在MSRA数据集中,相比于性能第2的模型,F值提高了2.2%,MAE降低了5.6%;在DUT-OMRON数据集中,相比于性能第2的模型,F值提高了5.6%,MAE降低了17.4%。同时也在MSRA数据集中进行了对比实验以验证融合算法的有效性,对比实验结果表明提出的融合算法改善了显著性检测的效果。结论 本文所提出的显著性模型,综合了传统模型和深度学习模型的优点,使显著性检测结果更加准确。  相似文献   

18.
目的 基于学习的图像超分辨率重建方法已成为近年来图像超分辨率重建研究的热点。针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法网络层少、感受野小、泛化能力差等缺陷,提出了基于中间层监督卷积神经网络的图像超分辨率重建方法,以进一步提高图像重建的质量。方法 设计了具有中间层监督的卷积神经网络结构,该网络共有16层卷积层,其中第7层为中间监督层;定义了监督层误差函数和重建误差函数,用于改善深层卷积神经网络梯度消失现象。训练网络时包括图像预处理、特征提取和图像重建3个步骤,采用不同尺度因子(2、3、4)模糊的低分辨率图像交叉训练网络,以适应对不同模糊程度的图像重建;使用卷积操作提取图像特征时将参数pad设置为1,提高了对图像和特征图的边缘信息利用;利用残差学习完成高分辨率图像重建。结果 在Set5和Set14数据集上进行了实验,并和双三次插值、A+、SelfEx和SRCNN等方法的结果进行比较。在主观视觉评价方面,本文方法重建图像的清晰度和边缘锐度更好。客观评价方面,本文方法的峰值信噪比(PSNR)平均分别提高了2.26 dB、0.28 dB、0.28 dB和0.15 dB,使用训练好的网络模型重建图像耗用的时间不及SRCNN方法的一半。结论 实验结果表明,本文方法获得了更好的主观视觉评价和客观量化评价,提升了图像超分辨率重建质量,泛化能力好,而且图像重建过程耗时更短,可用于自然场景图像的超分辨率重建。  相似文献   

19.
目的 超分辨率技术在实际生活中具有较为广泛的应用。经典的基于卷积神经网络的超分辨率(SRCNN)方法存在重建图像纹理结构模糊以及网络模型训练收敛过慢等问题。针对这两个问题,在SRCNN的基础上,提出一种多通道卷积的图像超分辨率(MCSR)算法。方法 通过增加残差链接,选择MSRA初始化方法对网络权值进行初始化,加快模型收敛;引入多通道映射提取更加丰富的特征,使用多层3×3等小卷积核代替单层9×9等大卷积核,更加有效地利用特征,增强模型的超分辨率重构效果。结果 MCSR迭代4×106次即可收敛,在Set5与Set14数据集上边长放大3倍后的平均峰值信噪比分别是32.84 dB和29.28 dB,与SRCNN相比提升显著。结论 MCSR收敛速度更快,并且可以生成轮廓清晰的高分辨率图像,超分辨率效果更加优秀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号