首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The networked control system (NCS) is currently receiving increasing attention from researchers. Researches on this subject, however, have not considered the co‐design of network quality of service (QoS) and control quality of performance (QoP). This paper proposes a novel NCS design framework based on scheduling and control co‐design to compensate for random network‐induced delays. In the framework, a scheduling algorithm used to find the optimal sampling regions of control loops performs rough adjustment and guarantees the network QoS, while a novel adaptive fuzzy PID controller is designed to perform accurate adjustment to guarantee the control QoP. Practical application results obtained with a multi‐loop NCS show that the framework can ensure satisfactory performance due to its robustness against network uncertainty.  相似文献   

2.
This paper is concerned with the absolute stability problem of networked control systems (NCSs) with the controlled plant being Lurie systems (Lurie NCSs), in which the network‐induced delays are assumed to be time‐varying and bounded. First, in consideration of both the time‐varying network‐induced delays and data packet dropouts, the Lurie NCSs can be modeled as a multiple‐delays Lurie system. Then, a delay‐dependent absolute stability condition is established by using the Lyapunov–Krasovskii method. Next, two approaches to controller design are proposed in the terms of simple algebra criteria, which are easily solved via the toolbox in Matlab. Furthermore, the main results can be extended to robust absolute stability of Lurie NCSs with the structured uncertainties, where robust absolute stability conditions and approaches to robust controller design are presented. Finally, two numerical examples are worked out to illustrate the feasibility and the effectiveness of the proposed method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
This paper is concerned with modeling and controlling under the mixed event‐triggered mechanism (ETM) for networked control systems (NCSs) with time‐varying delays and uncertainties. Firstly, an event‐triggered threshold is set by using both state and state‐independent informations in the mixed ETM. Then the event‐triggered NCSs with network‐induced time‐varying delays which exist in both sensor‐to‐controller and controller‐to‐actuator channels are modeled as a general time‐delay system. Based on the piecewise differentiable characteristic of the time‐varying delay and by using the approach of free weighting matrix and reciprocally convex, a less conservative criterion to be globally uniformly ultimately bounded (GUUB) stability and a controller design method are derived. Furthermore, an algorithm is proposed to obtain the desired mixed ETM and state‐feedback controller which can render the network load and control performance to reach an expected level. Compared with the relative and absolute ETMs, the proposed mechanism can effectively improve the transmission efficiency during the whole working time. Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

4.
This paper is concerned with the observer‐based H control for continuous‐time networked control systems (NCSs) considering packet dropouts and network‐induced delays. The packet dropouts and network‐induced delays in the sensor‐to‐controller (S‐C) channel and network‐induced delays in the controller‐to‐actuator (C‐A) channel are taken into full consideration. By taking the non‐uniform distribution characteristic of the arrival instants of actually adopted controller inputs into account, a new model for continuous‐time NCSs is established. To reduce the conservatism of modelling, a linear estimation‐based measurement output estimation method is introduced. Based on the newly established model and a Lyapunov functional, new controller design methods are proposed. A numerical example is given to illustrate the effectiveness and merits of the derived results.  相似文献   

5.
This paper investigates the stabilization problem of the nonlinear networked control systems (NCSs) with drops and variable delays. The NCS is modeled as a sampled‐data system. For such a sampled‐data NCS, the stability properties are studied for delay that can be both shorter and longer than one sampling period, respectively. The exponential stability conditions are derived in terms of the parameters of the plant and time delay. On the other hand, a model‐based control scheme based on an approximate discrete‐time model of the plant is presented to guarantee the stability of the closed‐loop system subject to variable time delays and packet losses. The performance of the proposed control schemes are examined through numerical simulations of an automated rendezvous and docking of spacecraft system. Moreover, the simulations show that by employing the model‐based controller, a higher closed‐loop control performance can be achieved. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
This paper addresses the model‐based event‐triggered predictive control problem for networked control systems (NCSs). Firstly, we propose a discrete event‐triggered transmission scheme on the sensor node by introducing a quadratic event‐triggering function. Then, on the basis of the aforementioned scheme, a novel class of model‐based event‐triggered predictive control algorithms on the controller node is designed for compensating for the communication delays actively and achieving the desired control performance while using less network resources. Two cases, that is, the value of the communication delay of the first event‐triggered state is less or bigger than the sampling period, are considered separately for certain NCSs, regardless of the communication delays of the subsequent event‐triggered states. The codesign problems of the controller and event‐triggering parameter for the two cases are discussed by using the linear matrix inequality approach and the (switching) Lyapunov functional method. Furthermore, we extended our results to the NCSs with systems uncertainties. Finally, a practical ball and beam system is studied numerically to demonstrate the compensation effect for the communication delays with the proposed novel model‐based event‐triggered predictive control scheme. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the problem of absolute stability and stabilization for networked control systems (NCSs) with the controlled plant being Lurie systems (Lurie NCSs), in which the network‐induced delays are assumed to be time‐varying and bounded. By considering the relationship between the network‐induced delay and its upper bound, an improved stability criterion for networked control system is proposed. Furthermore, the resulting condition is extended to design a state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. A numerical example is worked out to illustrate the effectiveness and the benefits of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the network-induced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.  相似文献   

9.
The main objective of this paper is to demonstrate the feasibility of Internet‐based real‐time control. A novel client/server‐based architecture for Internet‐based supervisory control with a Common Gateway Interface/Hyper Text Markup Language (CGI/HTML) interface is presented. A real‐time operating environment was established for closed‐loop control over Ethernet. We conceived of an autoregressive (AR) prediction scheme and a novel compensation algorithm to compensate for network‐induced time delays and data‐packet losses simultaneously. We constructed an open‐loop unstable ball magnetic‐levitation (maglev) setup as a test bed to validate the two proposed control architectures. Experimental results proved the feasibility of Internet‐based real‐time control and verified the effectiveness of the proposed time‐delay/packet‐loss compensation algorithm in networked feedback control systems.  相似文献   

10.
This paper investigates the problem of quantized feedback control for networked control systems (NCSs) with time‐varying delays and time‐varying sampling intervals, wherein the physical plant is a continuous‐time, and the control input is a discrete‐time signal. By using an input delay approach and a sector bound method, the network induced delays, the signal quantization and sampling intervals are presented in one framework in the case of the state and the control input by quantization in a logarithmic form. We exploit a novel Lyapunov functional with discontinuity, taking full advantage of the NCS characteristic information including the bounds of delays, the bounds of sampling intervals and quantization parameters. In addition, it has been shown that the Lyapunov functional is decreased at the jump instants. Furthermore, we use the Leibniz‐Newton formula and free‐weighting matrix method to obtain the stability analysis and stabilization conditions which are dependent on the NCS characteristic information. The proposed stability analysis and stabilizing controller design conditions can be presented in term of linear matrix inequalities, which have less conservativeness and less computational complexity. Four examples demonstrate the effectiveness of the proposed methods.  相似文献   

11.
This paper analyzes the stability of networked control systems (NCSs) with data packet dropout and transmission delays induced by communication channels. Discrete‐time NCSs with data packet dropout and transmission delays are modeled as linear systems with time‐varying delays. Sufficient conditions for the stability of the NCSs are established in terms of linear matrix inequalities (LMIs) by using the Lyapunov function method. The case of NCSs with multiple‐packet transmission is also studied. A numerical example is presented to illustrate our proposed approach.  相似文献   

12.
The problem of stabilizing Networked Control Systems (NCSs) with random but bounded delays is discussed in this paper. By using an augmented state‐space method, this class of problem can be modeled as a discrete‐time jump linear system governed by finite‐state Markov chains. As the network‐induced time vary delay of NCSs changes along with the network transferring route and the network load, results in systems becoming instable with controller designs based on a fixed transition matrix, we firstly make use of the V‐K iteration algorithm to design m groups of stabilizing controllers that satisfy different m transition matrixes, and then constitute a switched controller for them and a switch. The simulation shows that if the switched controller is used to stabilize the discrete‐time jump linear system, this system not only has a larger stabilizing span, but also has better dynamic stabilizing characters compared to those with only one group of controllers. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

13.
This paper investigates the H control synthesis problem for Lurie networked control systems (NCSs) with multiple time‐varying delays. With the consideration of both network‐induced delays and data packet dropout, Lurie NCSs discussed in this work can effectively be transformed into Lurie control systems with multiple time‐varying delays. In addition, with the non‐uniform distribution characteristics of network delays, based on the delay probability distribution, the stable controller design, and H synthesis, approaches are derived in the form of linear matrix inequalities (LMIs). Finally, a set of numerical examples are studied, and the results demonstrate the applicability and effectiveness of the suggested approaches.  相似文献   

14.
In this paper, we present a robust adaptive control algorithm for a class of bilateral teleoperation systems with system uncertainties and jittering time delays. The remarkable feature of jittering delays is that time delays change sharply and randomly. Conventional controllers would fail because jittering time delays introduce serious chattering. To address the jittering issue, a novel jittering‐free scheme is developed by relaxing and extending the frequently used constant upper bound. Moreover, an adaptive law was incorporated with the Chebyshev neural network to deal with the system uncertainties. To obtain finite‐time synchronization performance, a fast terminal sliding mode controller is proposed through the technique of “adding a power integrator.” With the proposed control scheme, the robust finite‐time convergence performance is guaranteed. The settling time can be further calculated with the controller parameters. The simulation and experiment results have demonstrated the effectiveness of the proposed method.  相似文献   

15.
This paper presents a novel impulsive system approach to input-to-state stability (ISS) analysis of networked control systems (NCSs) with time-varying sampling intervals and delays. This approach is based upon the new idea that an NCS can be viewed as an interconnected hybrid system composed of an impulsive subsystem and an input delay subsystem. A new type of time-varying discontinuous Lyapunov-Krasovskii functional, which makes full use of the information on the piecewise-constant input and the bounds of the network delays, is introduced to analyze the ISS property of NCSs. Linear matrix inequality based sufficient conditions are derived for ISS of NCSs with respect to external disturbances. When applied to the approximate tracking problem for NCSs, the derived ISS result provides bounds on the steady-state tracking error. Numerical examples are provided to show the efficiency of the proposed approach.  相似文献   

16.
随机延迟网络控制系统中的分段时戳动态矩阵控制   总被引:9,自引:0,他引:9  
针对网络控制系统中小于一个采样周期的随机延迟,引入了分段时戳动态矩阵控制算法.通过时戳方法测量网络延迟,在线校正系统的阶跃响应系数向量和控制系数向量,并采用分段算法来减少所需的在线计算量.给出了算法的推导过程和程序实现方法,并基于实时控制系统仿真平台TrueTime进行仿真研究.应用该算法对共享以太网中直流电机进行控制,取得了比标准动态矩阵控制算法更好的控制品质.  相似文献   

17.
In this paper, the stabilization of a class of networked control systems (NCSs) with time‐varying delay is discussed where the random delay is less than one sensor period or more than one sensor period but bounded. A new multirate method is proposed to formulate the union model for both short and long random delays. Sufficient conditions on the existence of stabilizing controllers are established when the transition probability matrix is known. V‐K iteration approach is employed to calculate the mode‐dependent and mode‐independent state‐feedback gains of NCSs. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
This paper is concerned with the problem of robust H controller design for a class of uncertain networked control systems (NCSs). The network‐induced delay is of an interval‐like time‐varying type integer, which means that both lower and upper bounds for such a kind of delay are available. The parameter uncertainties are assumed to be normbounded and possibly time‐varying. Based on Lyapunov‐Krasovskii functional approach, a robust H controller for uncertain NCSs is designed by using a sum inequality which is first introduced and plays an important role in deriving the controller. A delay‐dependent condition for the existence of a state feedback controller, which ensures internal asymptotic stability and a prescribed H performance level of the closed‐loop system for all admissible uncertainties, is proposed in terms of a nonlinear matrix inequality which can be solved by a linearization algorithm, and no parameters need to be adjusted. A numerical example about a balancing problem of an inverted pendulum on a cart is given to show the effectiveness of the proposed design method.  相似文献   

19.
Robust stabilization for a class of nonlinear networked control systems   总被引:2,自引:0,他引:2  
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.  相似文献   

20.
In this paper, a solution to the approximate tracking problem of sampled‐data systems with uncertain, time‐varying sampling intervals and delays is presented. Such time‐varying sampling intervals and delays can typically occur in the field of networked control systems. The uncertain, time‐varying sampling and network delays cause inexact feedforward, which induces a perturbation on the tracking error dynamics, for which a model is presented in this paper. Sufficient conditions for the input‐to‐state stability (ISS) of the tracking error dynamics with respect to this perturbation are given. Hereto, two analysis approaches are developed: a discrete‐time approach and an approach in terms of delay impulsive differential equations. These ISS results provide bounds on the steady‐state tracking error as a function of the plant properties, the control design and the network properties. Moreover, it is shown that feedforward preview can significantly improve the tracking performance and an online extremum seeking (nonlinear programming) algorithm is proposed to online estimate the optimal preview time. The results are illustrated on a mechanical motion control example showing the effectiveness of the proposed strategy and providing insight into the differences and commonalities between the two analysis approaches. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号