首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbridge testing on symmetrical trilayer films   总被引:1,自引:0,他引:1  
In this paper, we extended the microbridge testing method to characterize the mechanical properties of symmetrical trilayer thin films. Theoretically, we analyzed the deformation of a trilayer microbridge sample with a deformable boundary condition and derived load-deflection formulas in closed-form. The slope of a load-deflection curve under small deformation gives the relationship between the bending stiffness and the residual force of a trilayer microbridge. Taking this relationship, we were able to assess simultaneously the Young's modulus of two kinds of materials composing the symmetrical trilayer film and the thickness-averaged residual stress of the film. Experimentally, we fabricated symmetrical trilayer microbridge samples of SiO/sub 2//Si/sub 3/N/sub 4//SiO/sub 2/ on 4-inch p-type (100) silicon wafers and conducted the microbridge tests with a load and displacement sensing nanoindenter system equipped with a microwedge indenter. The experimental results verified the proposed microbridge testing method. The thickness-averaged residual stress of the 1.1-/spl mu/m trilayer thin films was determined to be 8.8 MPa, while the Young's modulus of the 0.3-/spl mu/m silicon oxide layers and the Young's modulus of the 0.5-/spl mu/m silicon nitride layer were evaluated to be 31 GPa and 294 GPa, respectively.  相似文献   

2.
Fracture strength of silicon carbide microspecimens   总被引:1,自引:0,他引:1  
Polycrystalline silicon carbide tensile microspecimens 3.1 mm long were produced by deep reactive ion etching of wafers on the order of 150 /spl mu/m thick. The gage sections, which were nominally 200 /spl mu/m wide, were either straight, slightly curved, or contained double notches in order to vary the size of the highly stressed region. The fracture stresses of 190 specimens from three process runs were measured in a novel test setup. The average local fracture strengths for the last run were: straight 0.38/spl plusmn/0.13 GPa, curved 0.47/spl plusmn/0.15 GPa, notched 0.78/spl plusmn/0.28 GPa. The corresponding Weibull characteristic strengths were, 0.42 GPa, 0.53GPa, and 0.88 GPa with respective moduli 3.3, 3.4, and 3.1. These results show a clear increase in the strength of the material as the size of the highly stressed region decreases. Fractographic analyzes showed failures initiating from the bottoms of side grooves left by the etching process. The grains of the material were quite heterogeneous, varying from a few microns in size to columnar grains through the entire specimen thickness. The curved specimens were used as the base for predicting the probability of failure of the other two shapes. While the Weibull approach was quite accurate for the straight shape, it over-predicted the strengths of the notched specimens. Given the microstructure of the material relative to the size of the specimen, a continuum analysis is questionable.  相似文献   

3.
Wafer-level mechanical characterization of silicon nitride MEMS   总被引:2,自引:0,他引:2  
The mechanical and physical properties of silicon nitride thin films have been characterized, particularly for their application in load-bearing MEMS applications. Both stoichiometric (high-stress) and silicon-rich (low-stress) films deposited by LPCVD have been studied. Young's modulus, E, has been determined using conventional lateral resonators and by bulge testing of membranes, and tensile strength has been determined using a specially designed microtensile specimen. All microdevices have been fabricated using standard micromachining. We have also measured the thermal expansion coefficient of stoichiometric silicon nitride. Our best estimate of E is 325/spl plusmn/30 GPa for stoichiometric and 295/spl plusmn/30 GPa for silicon-rich silicon nitride. The average tensile strength for the stoichiometric material is 6.4/spl plusmn/0.6 GPa, while that for the silicon-rich material is 5.5/spl plusmn/0.8 GPa; the burst strength of membranes of the stoichiometric material is 7.1/spl plusmn/0.2 GPa.  相似文献   

4.
Silicon-incorporated diamond-like carbon (Si-DLC) films were deposited using a bipolar-type plasma based ion implantation and deposition technique, and the effects of Si-incorporation on the microstructural, tribological, anti-corrosion and lubricant bonding properties of the Si-DLC films were investigated. The analysis of Raman spectroscopy exhibited that the sp3 bonds in the DLC film increase due to Si addition. XPS analysis revealed that a thick oxide layer exists on the Si-DLC film surfaces. These explain the high lubricant bonding properties of the Si-DLC films compared to that of the Si-free DLC films. The silicon oxide layer on the Si-DLC film and the transferred silicon oxide layer on the steel ball prevents from the metal/DLC contact between the Si-DLC film and steel ball when sliding, which results in a low friction. Incorporation of Si in DLC films led to significant improvements in the corrosion resistance due to low internal stress and thick insulating oxide layer.  相似文献   

5.
T-shape, LPCVD silicon nitride cantilevers are fabricated to determine Young's modulus and fracture strength of silicon nitride thin films at room and cryogenic temperatures. A helium-cooled measurement setup is developed and installed inside a focused-ion-beam (FIB) system. A lead-zirconate-titanate (PZT) translator powered by a function generator and a dc voltage is utilized as an actuator, and a silicon diode is used as a temperature sensor in this setup. Resonant frequencies of identical cantilevers with different "milling masses" are measured to obtain thickness and Young's modulus of the silicon nitride thin films, while a bending test is performed to obtain fracture strength. From the experiment, the average Young's modulus of low-pressure chemical-vapor deposition (LPCVD) silicon nitride thin films varies from 260.5 GPa at room temperature (298 K) to 266.6 GPa at 30 K, and the average fracture strength ranges from 6.9 GPa at room temperature to 7.9 GPa at 30 K. The measurement setup and technique presented here can be used to characterize the mechanical properties of different MEMS materials at cryogenic temperatures.  相似文献   

6.
This work, the second of two parts, reports on the implementation and characterization of high-quality factor (Q) side-supported single crystal silicon (SCS) disk resonators. The resonators are fabricated on SOI substrates using a HARPSS-based fabrication process and are 3 to 18 /spl mu/m thick. They consist of a single crystal silicon resonant disk structure and trench-refilled polysilicon drive and sense electrodes. The fabricated resonators have self-aligned, ultra-narrow capacitive gaps in the order of 100 nm. Quality factors of up to 46 000 in 100 mTorr vacuum and 26000 at atmospheric pressure are exhibited by 18 /spl mu/m thick SCS disk resonators of 30 /spl mu/m in diameter, operating in their elliptical bulk-mode at /spl sim/150 MHz. Motional resistance as low as 43.3 k/spl Omega/ was measured for an 18-/spl mu/m-thick resonator with 160 nm capacitive gaps at 149.3 MHz. The measured electrostatic frequency tuning of a 3-/spl mu/m-thick device with 120 nm capacitive gaps shows a tuning slope of -2.6 ppm/V. The temperature coefficient of frequency for this resonator is also measured to be -26 ppm//spl deg/C in the temperature range from 20 to 150/spl deg/C. The measurement results coincide with the electromechanical modeling presented in Part I.  相似文献   

7.
Accurate measurement of mechanical properties is very difficult for films that are only a few microns thick. Previously, these properties have been determined by indirect methods such as cantilever beam and diaphragm bulge tests. This paper presents a new technique to measure the Young's modulus of thin films in a direct manner consistent with its definition. Strain is measured by a laser-based technique that enables direct and accurate recording of strain on a thin-film specimen. Load is recorded with a 1-lb load cell, and an air bearing is used to eliminate friction in the loading system. The specimen is phosphorus-doped polysilicon that has a gage cross section of 3.5 μm thick by 600 μm wide. All 29 uniaxial tensile tests show brittle behavior, and the average values of Young's modulus and fracture strength are measured to be 170±6.7 GPa and 1.21±0.16 GPa, respectively. One fatigue test is also reported in this paper  相似文献   

8.
Fracture strength of polysilicon at stress concentrations   总被引:9,自引:0,他引:9  
Mechanical design of MEMS requires the ability to predict the strength of load-carrying components with stress concentrations. The majority of these microdevices are made of brittle materials such as polysilicon, which exhibit higher fracture strengths when smaller volumes or areas are involved. A review of the literature shows that the fracture strength of polysilicon increases as tensile specimens get smaller. Very limited results show that fracture strengths at stress concentrations are larger. This paper examines the capability of Weibull statistics to predict such localized strengths and proposes a methodology for design. Fracture loads were measured for three shapes of polysilicon tensile specimens - with uniform cross-section, with a central hole, and with symmetric double notches. All specimens were 3.5 /spl mu/m thick with gross widths of either 20 or 50 /spl mu/m. A total of 226 measurements were made to generate statistically significant information. Local stresses were computed at the stress concentrations, and the fracture strengths there were approximately 90% larger than would be predicted if there were no size effect (2600 MPa versus 1400 MPa). Predictions based on mean values are inadequate, but Weibull statistics are quite successful. One can predict the fracture strength of the four shapes with stress concentrations to within /spl plusmn/10% from the fracture strengths of the smooth uniaxial specimens. The specimens and test methods are described and the Weibull approach is reviewed and summarized. The CARES/Life probabilistic reliability program developed by NASA and a finite element analysis of the stress concentrations are required for complete analysis. Incorporating all this into a design methodology shows that one can take "baseline" material properties from uniaxial tensile tests and predict the overall strength of complicated components. This is commensurate with traditional mechanical design, but with the addition of Weibull statistics.  相似文献   

9.
This paper reports the mechanical properties and fracture behavior of silicon carbide (3C-SiC) thin films grown on silicon substrates. Using bulge testing combined with a refined load-deflection model of long rectangular membranes, which takes into account the bending stiffness and prestress of the membrane material, the Young's modulus, prestress, and fracture strength for the 3C-SiC thin films with thicknesses of 0.40 and 1.42 mum were extracted. The stress distribution in the membranes under a load was calculated analytically. The prestresses for the two films were 322 plusmn 47 and 201 plusmn 34 MPa, respectively. The thinner 3C-SiC film with a strong (111) orientation has a plane-gstrain moduli of 415 plusmn 61 GPa, whereas the thicker film with a mixture of both (111) and (110) orientations exhibited a plane-strain moduli of 329 plusmn 49 GPa. The corresponding fracture strengths for the two kinds of SiC films were 6.49 plusmn 0.88 and 3.16 plusmn 0.38 GPa, respectively. The reference stresses were computed by integrating the local stress of the membrane at the fracture over edge, surface, and volume of the specimens and were fitted with Weibull distribution function. For the 0.40-mum-thick membranes, the surface integration has a better agreement between the data and the model, implying that the surface flaws are the dominant fracture origin. For the 1.42-mum-thick membranes, the surface integration presented only a slightly better fitting quality than the other two, and therefore, it is difficult to rule out unambiguously the effects of the volume and edge flaws. [2007-0191].  相似文献   

10.
A new test structure was developed to measure three major unknown mechanical parameters of deposited thin films, i.e., fracture strength, Young's modulus, and residual stress. The structure was designed to have plural specimens of a deposited thin film bridging the gap of the silicon substrate and enables the easy and efficient tensile testing of the film. It was used to measure those parameters of various polysilicon films. Polysilicon is commonly used as a structural material of microelectromechanical systems (MEMS) after being deposited at a temperature below 600 degC and annealed at a temperature around 1000 degC to remove the residual stress. On the other hand, polysilicon can be also deposited at a temperature higher than 600 degC. The three parameters of polysilicon films depend on process temperature and were evaluated using the new test structure. Concerning the strength, films deposited at 560 degC had the highest strength when annealed at 850 degC. Films deposited at 625 degC and annealed at 1050 degC were weaker than those deposited at 560 degC and annealed at 1050 degC. Young's modulus was found to behave in a similar way. The trend of the residual stress was the same as already reported, but its local evaluation was possible in combination with the tensile strength determination  相似文献   

11.
The measured performance of a column-type microthermoelectric cooler, fabricated using vapor-deposited thermoelectric films and patterned using photolithography processes, is reported. The columns, made of p-type Sb/sub 2/Te/sub 3/ and n-type Bi/sub 2/Te/sub 3/ with an average thickness of 4.5 /spl mu/m, are connected using Cr/Au/Ti/Pt layers at the hot junctions, and Cr/Au layers at the cold junctions. The measured Seebeck coefficient and electrical resistivity of the thermoelectric films, which were deposited with a substrate temperature of 130/spl deg/C, are -74 /spl mu/V/K and 3.6/spl times/10/sup -5/ /spl Omega/-m (n-type, power factor of 0.15 mW/K/sup 2/-m), and 97 /spl mu/V/K and 3.1/spl times/10/sup -5/ /spl Omega/-m (p-type, power factor of 0.30 mW/K/sup 2/-m). The cooling performance of devices with 60 thermoelectric pairs and a column width of 40 /spl mu/m is evaluated under a minimal cooling load (thermobuoyant surface convection and surface radiation). The average cooling achieved is about 1 K. Fabrication challenges include the reduction of the column width, implementation of higher substrate temperatures for optimum thermoelectric properties, and improvements of the top connector patterning and deposition.  相似文献   

12.
Microelectromechanical systems (MEMS) accelerometers based on piezoelectric lead zirconate titanate (PZT) thick films with trampoline or annular diaphragm structures were designed, fabricated by bulk micromachining, and tested. The designs provide good sensitivity along one axis, with low transverse sensitivity and good temperature stability. The thick PZT films (1.5-7 /spl mu/m) were deposited from an acetylacetonate modified sol-gel solution, using multiple spin coating, pyrolysis, and crystallization steps. The resulting films show good dielectric and piezoelectric properties, with P/sub r/ values >20 /spl mu/C/cm/sup 2/, /spl epsiv//sub r/>800, tan/spl delta/<3%, and |e/sub 31,f/| values >6.5 C/m/sup 2/. The proof mass fabrication, as well as the accelerometer beam definition step, was accomplished via deep reactive ion etching (DRIE) of the Si substrate. Measured sensitivities range from 0.77 to 7.6 pC/g for resonant frequencies ranging from 35.3 to 3.7 kHz. These accelerometers are being incorporated into packages including application specific integration circuit (ASIC) electronics and an RF telemetry system to facilitate wireless monitoring of industrial equipment.  相似文献   

13.
In this paper, a process for the microfabrication of a wafer-scale palladium-silver alloy membrane (Pd-Ag) is presented. Pd-Ag alloy films containing 23 wt% Ag were prepared by co-sputtering from pure Pd and Ag targets. The films were deposited on the unetched side of a <110>-oriented silicon wafer in which deep grooves were etched in a concentrated KOH solution, leaving silicon membranes with a thickness of ca. 50 /spl mu/m. After alloy deposition, the silicon membranes were removed by etching, leaving Pd-Ag membranes. Anodic bonding of thick glass plates (containing powder blasted flow channels) to both sides of the silicon substrate was used to package the membranes and create a robust module. The hydrogen permeability of the Pd-Ag membranes was determined to be typically 0.5 mol H/sub 2//m/sup 2//spl middot/s with a minimal selectivity of 550 for H/sub 2/ with respect to He. The mechanical strength of the membrane was found to be adequate, pressures of up to 4 bars at room temperature did not break the membrane. The results indicate that the membranes are suitable for application in hydrogen purification or in dehydrogenation reactors. The presented fabrication method allows the development of a module for industrial applications that consists of a stack of a large number of glass/membrane plates.  相似文献   

14.
Xurography: rapid prototyping of microstructures using a cutting plotter   总被引:2,自引:0,他引:2  
This paper introduces xurography, or "razor writing," as a novel rapid prototyping technique for creating microstructures in various films. This technique uses a cutting plotter traditionally used in the sign industry for cutting graphics in adhesive vinyl films. A cutting plotter with an addressable resolution of 10 /spl mu/m was used to cut microstructures in various films with thicknesses ranging from 25 to 1000 /spl mu/m. Positive features down to 35 /spl mu/m and negative features down to 18 /spl mu/m were cut in a 25 /spl mu/m thick material. Higher aspect ratios of 5.2 for positive features and 8 for negative features were possible in a 360 /spl mu/m thick material. A simple model correlating material properties to minimum feature size is introduced. Multilayered microstructures cut from pressure sensitive and thermal activated adhesive films were laminated in less than 30 min without photolithographic processes or chemicals. Potential applications of these microstructures are explored including: shadow masking, electroplating, micromolds for PDMS, and multilayered three-dimensional (3-D) channels. This inexpensive method can rapidly prototype microfluidic devices or tertiary fluid connections for higher resolution devices. [1488].  相似文献   

15.
研究了柠檬酸胺-1-羟基乙烷二膦酸(HEDP)镀液体系中Ni-W的力学性能。通过紫外曝光的光刻、电铸和注塑(UV—LIGA)技术制备出微拉伸试样和单轴微拉伸测试系统进行拉伸试验。结果表明:在Ni-W薄膜试样尺寸为5μm×50μm×100μm条件下,其杨氏模量约为100.4GPa,抗拉强度为1.96GPa,应变约为3.6%。  相似文献   

16.
Helical microstructures are of interest for MEMS devices because of their spring-like shape. However, helices with micron and submicron dimensions are difficult to engineer using conventional processing techniques where patterning is accomplished lithographically. In this paper, we report the fabrication of porous gold, nickel, and polystyrene thin films with helical pore architectures. All films were made using a replication process, in which a thin film comprised of independent helical microstructures acted as the template. Filling of the template with metals was achieved by electroplating through the microstructures, whereas filling with polystyrene was achieved by capillary action. Porous films were produced from these composites by wet etch removal of the template material. Typical helical pores were on the order of 100 nm in diameter and extended through a film 1 /spl mu/m to 2 /spl mu/m thick. These films were generally more robust than the films from which they were templated, since they consisted of a solid network with helical pores rather than individual structures. Polymer and metal films with helical pores could be used for sensor and catalytic devices that take advantage of the chemical properties of these materials. Polymer films are also of interest for mechanical sensor and actuator devices since they are expected to be more compliant than both traditional MEMS materials and the films from which they were templated.  相似文献   

17.
The importance of service environment to the fatigue resistance of n/sup +/-type, 10 /spl mu/m thick, deep-reactive ion-etched (DRIE) silicon structural films used in microelectromechanical systems (MEMS) was characterized by testing of electrostatically actuated resonators (natural frequency, f/sub 0/, /spl sim/40 kHz) in controlled atmospheres. Stress-life (S-N) fatigue tests conducted in 30/spl deg/C, 50% relative humidity (R.H.) air demonstrated the fatigue susceptibility of silicon films. Further characterization of the films in medium vacuum and 25% R.H. air at various stress amplitudes revealed that the rates of fatigue damage accumulation (measured via resonant frequency changes) are strongly sensitive to both stress amplitude and, more importantly, humidity. Scanning electron microscopy of high-cycle fatigue fracture surfaces (cycles to failure, N/sub f/>1/spl times/10/sup 9/) revealed clear failure origins that were not observed in short-life (N/sub f/<1/spl times/10/sup 4/) specimens. Reaction-layer and microcracking mechanisms for fatigue of silicon films are discussed in light of this empirical evidence for the critical role of service environment during damage accumulation under cyclic loading conditions.  相似文献   

18.
In order to improve the reliability of MEMS designs, evaluating the mechanical properties of soft magnetic materials is needed. In this paper, we present a tensile testing method to characterize the mechanical properties of microscale electroplated permalloy (80 wt% Ni, 20 wt% Fe) films. The gauge section of the specimen is 50 μm wide, 100 μm long and 5 μm thick. The measured Young’s modulus of permalloy films is 96.4 GPa, and the tensile strength is 1.61 GPa. The fracture strain measured by the images of specimens is about 2%.  相似文献   

19.
This work presents the design, fabrication, and testing of a two-axis 320 pixel micromirror array. The mirror platform is constructed entirely of single-crystal silicon (SCS) minimizing residual and thermal stresses. The 14-/spl mu/m-thick rectangular (750/spl times/800 /spl mu/m/sup 2/) silicon platform is coated with a 0.1-/spl mu/m-thick metallic (Au) reflector. The mirrors are actuated electrostatically with shaped parallel plate electrodes with 86 /spl mu/m gaps. Large area 320-mirror arrays with fabrication yields of 90% per array have been fabricated using a combination of bulk micromachining of SOI wafers, anodic bonding, deep reactive ion etching, and surface micromachining. Several type of micromirror devices have been fabricated with rectangular and triangular electrodes. Triangular electrode devices displayed stable operation within a (/spl plusmn/5/spl deg/, /spl plusmn/5/spl deg/) (mechanical) angular range with voltage drives as low as 60 V.  相似文献   

20.
We have investigated the effect of trimethylsilane ([(CH/sub 3/)/sub 3/SiH] or 3MS) flow rate on the growth of SiC thin-film on single-crystal sapphire substrate for fiber-optic temperature sensor. The SiC film thickness was in the range of 2-3 /spl mu/m. The variation of the 3MS flow rate affected the structural properties of the SiC films. This, in turn, changed the optical properties and temperature sensing performance of the sensors. Optical reflection from the SiC thin-film Fabry-Pe/spl acute/rot interferometers showed one-way phase shifts in resonant minima on all measured samples. Linear fits to the resonant minima (at 660 to 710 nm) versus temperature provide the corresponding thermal expansion coefficient, /spl kappa//sub /spl phi//, of 1.7-1.9/spl times/10/sup -5///spl deg/C. With the optimized 3MS flow rate, the SiC temperature sensor exhibits a temperature accuracy of /spl plusmn/2.8/spl deg/C from 22 to 540/spl deg/C. The short-term SiC sensor stability at 532/spl deg/C for two weeks shows a very small standard deviation of 0.97/spl deg/C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号